
Don’t Miss the Event Bus
Robert Raposa

● Acknowledge team

Agenda

● Why an event bus?

● Current stop

● Boarding the bus

● Riding safely

● Next stops

● More questions?

Why an event bus?

● I’m really starting with “What”, but only to get to the “Why”. It’s not just
because it’s shiny.

Why an event bus?

If you are communicating across Open edX services,
the event bus is your new friend.

● New paths of communication, or maintenance of old paths.
● Could potentially be used with other services communicating with the

Open edX platform
● It’s been on our architectural wish list for many years, and is finally

here.

Why an event bus?

Django Signals

● Hooks framework
● Extensibility
● Plugins
● Hooks: Events
● Django Signals

Why an event bus?

Event Bus

● Extending the same concept, but pushing it across services.

Why an event bus?

LMS

Credentials

Grade Changed

LMS
Worker

Send Grade if
Interesting

● Breaks boundaries
● Tightly coupled
● Need to limits server-to-server calls
● Reliability issues

Why an event bus?

LMS

Credentials
Grade Changed

Consumer

Grade Changed
Event

Ev
en

t B
us

New
“Grade Loving”

Consumer

(consume)

(consume)

● Consumer can decide what is “interesting”
● Loose coupling
● More resilient
● Extensibility via new consumers that have their own fondness for

grades.
● Consumers may or may not need data redundancy, but that is as simple

as writing the data.

Why an event bus?

● More features (quantity)
○ Loose coupling
○ Clear bounded contexts

● More types of features (quality)
○ Resilient communication
○ Data redundancy
○ Extensibility

● Eliminate expensive, delayed, batch
synchronization

●

Current stop

● Or, where are we at now.

Current stop (History)

● Happy path with an Enterprise use case
○ Confluent Kafka
○ Avro serialization
○ Consumer container

● Abstraction layer foundations
● OEP-52: Event Bus Architecture (Draft)

Current stop (History)

Studio

Scheduled Job

Course
Discovery

Worker
Ecommerce

1

2

● Extremely oversimplified picture of sending data from our course
authoring service to our catalog service.

● The job is big, slow, flaky, [and tightly coupled]. It also loaded all data
for all courses.

Current stop

Course
Discovery
ConsumerCourse Data

Changed
Event

Ev
en

t B
us

Studio
(consume)

● We’re using Kafka. Events can be replayed.
● Event data could be used to inform other services. Ecommerce as an

example.
● Extensibility, Loose Coupling, and other Architectural Jargon.
● Update only the things that are getting changed. Less work.

○ Sometimes things aren’t really changing, and that’s ok too.

Current stop

“I could cry this is so incredible”

Scheduled Job (Before)
Median Latency

Event Bus (After)
Median Latency

4-12 hours? (when successful) < 0.2s

Performance

How it makes people feel

● Why wasn’t this possible before? The event bus opened up new
possibilities.

Current stop

● OEP-52: Event Bus Architecture => Provisional
● Fully-functional Kafka implementation
● CloudEvent headers

○ OEP-41: Async Server Event Message Format
● Error and audit logging and monitoring
● Replay capabilities
● COURSE_CATALOG_INFO_CHANGED in production for edX.org
● Abstraction layer progress
● Onboarding documentation

● OEP-41 compliance. Header examples: id, time, source
● Audit and error logging. Monitoring in New Relic. (I don’t know what the

rest of the community uses.)

Boarding the bus

● Or, where are we at now.

Boarding the bus

● Discuss with owner
● One-time: Configure
● Create topic in Kafka
● Send event as Django signal
● Write signal receiver

○ Use rollout toggle
○ Send over bus

Producing an event

● Potential for more of this to move to configuration in the future
● One-time per service

Boarding the bus

def make_my_event_happen():
 ...
 MY_EVENT_HAPPENED.send_event('my_top_level_key': {event_data}) # 1 - initial send

@receiver(MY_EVENT_HAPPENED) # 2 - receiver
def listen_for_my_event(sender, signal, **kwargs):
 if (MY_EVENT_ENABLED.is_enabled()): # 3 - rollout toggle
 openedx_events.get_producer().send(
 signal=MY_EVENT_HAPPENED, # 4 - signal
 topic='my_topic', # 5 - topic
 event_key_field='my_primary_key_field', # 6 - key
 event_data={'my_top_level_key': kwargs['my_top_level_key']} # 7 - event data
 event_metadata=kwargs['metadata'] # 8 - metadata
)

Producing an event

● Lifted from how-to linked at end of presentation

Boarding the bus

● One-time: Configure
● One-time: Import management command
● Run management command for topic
● Write signal receiver

○ Work your magic

Consuming an event

● Infinite loop

Boarding the bus

./manage.py consume_events -t my-event-happened -g my_group -s my.event.type

@receiver(MY_EVENT_HAPPENED)
def listen_for_my_signal_and_do_things(sender, **kwargs):
 ... do things with the data in kwargs

Consuming an event

●

Riding safely

● Or, where are we at now.

Riding safely

Server

request

response

“Happy” Django

while true:
 poll_for_message
 process_message

“Sad” Django

DB DB

● Django isn’t actually sad, it just isn’t a pattern that Django was designed
around

● Infinite loop
● DB fixes

○ Consecutive error fix (generic fix)
○ Connection reset fix

● Be careful: e.g. Atomic Requests

Riding safely

MemcachedServer

Server

●

Riding safely

Course
Discovery
Consumer

Course Data
Changed

Event

Ev
en

t B
us

Studio

(consume)

Ecommerce

“Idempotent,
when it works”

●

Riding safely

Course
Discovery
Consumer

Course Data
Changed

Event
Ev

en
t B

us

Studio

(consume)

“Who wins this race?”
Course

Discoverycreate course via API
(originates in Publisher)

DB

● Bi-directional data flows
● Race conditions
● Fixes

○ Hacked delay
○ Uni-directional

■ Don’t allow editing from Publisher, or
■ Have publisher direct create in Studio and pick up changes.

Riding safely

● Infinite loop vs requests
● Memcached connections
● Idempotence
● Race conditions and bi-directional data flow
● More to come…

○ Schema evolution
○ Lifecycle events

● Race conditions and bi-directional data flows
● Some of these safety nets are being built in to the system. Some need

to be kept in mind.

Next stops

Next stops

● Redis implementation
● OEP-52: Event Bus Architecture => Accepted
● More events

○ XBLOCK_DELETED, XBLOCK_DUPLICATED,XBLOCK_PUBLISHED
○ Credential awarded
○ Grades (e.g. PERSISTENT_GRADE_SUMMARY_CHANGED)
○ Enrollments (e.g. COURSE_ENROLLMENT_CREATED,

COURSE_ENROLLMENT_CHANGED, COURSE_UNENROLLMENT_COMPLETED)
○ <insert your event here>

●

Next stops

● So much more to learn
○ See Platform Event Bus roadmap issue
○ #event-bus in Open edX Slack

●

https://github.com/openedx/platform-roadmap/issues/28

Recap

● Why an event bus?

● Current stop

● Boarding the bus

● Riding safely

● Next stops

● More questions?

More resources

● How to start using the Event Bus
● Platform Event Bus roadmap
● OEP-52: Event Bus Architecture
● OEP-41: Asynchronous Server Event Message Format
● OEP-50: Hooks extension framework
● Architecture Manifesto (WIP)
● https://github.com/openedx/event-bus-kafka/
● https://github.com/openedx/openedx-events

●

https://openedx.atlassian.net/wiki/spaces/AC/pages/3508699151/How+to+start+using+the+Event+Bus
https://github.com/openedx/platform-roadmap/issues/28
https://open-edx-proposals.readthedocs.io/en/latest/architectural-decisions/oep-0052-arch-event-bus-architecture.html#context
https://open-edx-proposals.readthedocs.io/en/latest/architectural-decisions/oep-0041-arch-async-server-event-messaging.html
https://open-edx-proposals.readthedocs.io/en/latest/architectural-decisions/oep-0050-hooks-extension-framework.html
https://openedx.atlassian.net/l/c/wN425om2

More Questions

