
A Practical Guide to
Backend Caching

March 29, 2023

Dave Ormsbee, Software Architect
The Center for Reimagining Learning

Agenda 1. Definitions, Motivations, Drawbacks

2. Comparing Options

a. Python

b. Django Cache Framework

c. Open edX Utilities

3. Operational Issues

4. Design Considerations

2

Definitions:
What is backend caching?

3

Defining Backend Caching

● Python/Django level caching

● Not browser/CDN caching

● Most of our caching is read-through

● Some of our caching is write-through

● Caches are ephemeral

○ Misses do not affect correctness

○ Data replication is not caching

4

Why Do We Love Caching?

5

6

Increases Speed

7

Reduces Costs

8

Real Answer: Low Effort and Risk

What are the Drawbacks?

● Code/Testing is More Complex (Global State)

● Behavior is Less Predictable (Cache Misses)

● Memory Leaks

Now to the fun stuff!

10

Python Caching:
functools is Your Friend

11

Instance Method Caching: @cached_property

12

enrollment.verified_mode

Less Magical Version

Use Sentinels to Handle None

Dave’s Object-Oriented Rant: Don’t Hide Remote Data Access

enrollment.get_verified_mode()enrollment.verified_mode

Network Error?
Timeout?

Exceptions?

“Work is happening.”“This is just an attribute.”

Theming & Docker
Case Study

● Adding 4 themes could triple response times

● is_theme_dir invoked thousands of times per view

● Called posix.isdir/listdir → filesystem access

● Page cache was holding things together with VMs

● Poor performance when using Docker deployments

● Refactor to startup initialization…?

Can’t use @cached_property

Slow File I/O

Picking a Caching Solution for Theming

● No Expiration or Invalidation

Themes don’t change for the lifetime of the process

● Small Size / Few Values

Underlying get_theme_dirs mostly called the same way (optional arg)

● Low Latency is Critical

get_theme_dirs is called thousands of times in a request

18

Solution: functools.lru_cache

● No Expiration or Invalidation

You can only clear lru_cache, not selectively invalidate keys

● Small Size / Few Values

Default maxsize is 128, kept in memory

● Low Latency is Critical

Runs in-process with a dict underneath–this is as fast as you get

19

Using lru_cache

20

Clearing lru_cache in Tests

21

Theming Caching Results

22

20 line PR (edx-platform #31090)

Alejandro Cardenas (Alec4r)
eduNEXT

Before After

avg 3.17 s 633.36 ms

min 133.3 ms 101.13 ms

med 3.56 s 606.90 ms

max 7.38 s 2.15 s

p(90) 4.45 s 1.13 s

p(95) 4.80 s 1.27 s

Django Cache
Framework

23

Django Cache Framework in a Nutshell

● get, set, delete

● get_many, set_many, delete_many

● View-level caching less used:

○ cache_page

○ vary_on_headers, vary_on_cookie, cache_control

● Multiple cache backends/named caches.

○ Usually Redis and Memcached

24

��

Cache Invalidation is Hard

27

● When to Expire -> Stale Data

● Key Growth -> Too Many Keys to Delete

● Errors -> Cleanup Failures

● Race Conditions -> Inconsistent State

Create New Keys Instead!

28

cache.get(f”course_outline.{course_key}.{version}”)

cache.get(f”course_outline.{course_key}”)

cache.delete(f”course_outline.{course_key}”)

Making New Cache Keys is Easy

29

● When to Expire -> Never! It’s always Truth.

● Key Growth -> No cleanup

● Errors -> The next request fixes it

● Race Conditions -> Versions are isolated

But wait, where does the
version come from?

30

cache.get(f”course_outline.{course_key}.{version}”)

Memcached/Redis is not Free

The Database is not Lava

31

1 ms

Database vs. Cache: Course Outlines

32

CourseSection

CourseContext

CourseSectionSequence

CourseSequenceExam

LearningContext

LearningSequence

Course Outline JSON

6 Database Models
~100 rows

~50 ms

1 cache entry
~50K
~1 ms

1 row lookup to generate
versioned cache key.

2 ms, never stale.

Database vs. Cache: Programs Cache (Old)

3333

● Cache entry for mapping of Programs -> Course Runs

● Does. Not. Scale.

● DO NOT USE CACHE ENTRIES AS A DATABASE

Cache Entry #1

Dict {
 …,
 …,
 …,
}

Cache Entry #2

Dict {
 …,
 …,
 …,
} Django App

Complex Models

Persistent

More Expensive

Simple Key/Value

Ephemeral

Cheaper

Database Cache

A Few Odds and Ends…

35

Alt Backend: Django Local Memory Cache

● django.core.cache.backends.locmem.LocMemCache

● Very fast

● Process-specific

● Unlike lru_cache, entries can expire

● Memory Leaks – keys only removed on access

● Less useful than it sounds

36

Even Less Useful Backends

● Dummy Cache (for dev)

django.core.cache.backends.dummy.DummyCache

● File Based Cache (don’t use this)

django.core.cache.backends.filebased.FileBasedCache

● Database Cache (don’t use this)

django.core.cache.backends.db.DatabaseCache

37

Open edX Caching Utilities
(OEP-22, edx-django-utils)

38

Special Thanks to Robert Raposa & Chris Lee (edX/2U)

10,000x slower

Memcached/Redis caching is

than Python caching

Course Waffle Flags
Case Study

● Size: Large number of keys (100K+)
Django LocMemCache leaks memory

● Frequency: Hundreds of lookups per request
Memcached/Redis is too slow

● Lifetime: Less than a minute
@lru_cache has no key timeout/invalidation

RequestCache

41

● In-memory cache cleared at the end of a request

● edx_django_utils.cache.middleware.RequestCacheMiddleware

● View function

○ function

■ for loop

● function

○ function

■ function

● function

○ function

■ Cache access

RequestCache vs. @cached_property

42

Pass cache
object through
all these layers?

Can I Use Memcached/Redis
and RequestCache together?

43

RequestCache + Django Cache

44

= TieredCache

TieredCache Example: Course Outlines

README: https://tinyurl.com/edx-django-utils-cache

https://tinyurl.com/edx-django-utils-cache

Side Note: Cache Misses and “Falsy” Values

46

Side Note: CachedResponse

47

Side Note: Force Cache Miss with TieredCache

48

MIDDLEWARE = (
 'edx_django_utils.cache.middleware.RequestCacheMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 ...
 # TieredCacheMiddleware middleware must come after these.
 'edx_django_utils.cache.middleware.TieredCacheMiddleware',
)

HTTP GET /api/v1/resource?force_cache_miss=true

Testing: CacheIsolationTestCase

● edx-platform: openedx.core.djangolib.testing.utils

● It should be in edx-django-utils

● CacheIsolationMixin and CacheIsolationTestCase

● Resets the Request Cache and Django Caches between tests

49

Test That Your Caching Actually Works
● assertNumQueries in uncached and cached states

● Do query counts only on api.py tests, not views.

50

Let’s Review!

Deciding our Caching Strategy…

51

multiple
requests

of values?

Calls per Request?

Django Cache API
(Memcached/Redis)

once/few

@lru_cacheprocess

@cached_property
(or equivalent)

simple

request

Access Pattern?

deeply nested

RequestCache

many Lifetime of Value?

Django Cache API
(Local Memory)

few

TieredCache

many

Operational Issues

53

��

Memcached Size Limit

54

● max_item_size default is 1 MB

● Raise it to 2 MB

Memcached/Redis and Silent Failures

55

● get/set will silently fail if it can’t reach the cache

○ Misconfiguration or server failure

● Takes ~1 minute to reconnect for Memcached

☠

Cache Stampede / Dog-piling

56

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

Memcached

Cache Stampede / Dog-piling

57

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

Memcached

Latency ↑↑↑↑↑

Throughput ↓↓↓↓↓

Cache Stampede Solution 1: Add Jitter

58

cache.set(cache_key, timeout=timeout)

jitter = random.randint(0, 300)
cache.set(cache_key, timeout=timeout + jitter)

Cache Stampede Solution: Replicate Data

59

gunicorn worker

Memcached
External Service

Complex Data Models

S3

Cache Stampede Solution 2: Replicate Data

60

gunicorn worker

Memcached
Simple Data Model

celery worker

External Service

Complex Data Models

S3

Load Balancing Course-based Cache Keys

61

hash(cache_key)

Memcached 1 CPU

Memcached 2 CPU

Memcached 3 CPU

Distribute With Randomization?

62

hash(
 cache_key +
 randint(1,10)
)

Memcached 1 CPU

Memcached 2 CPU

Memcached 3 CPU

Design for Caching

63

It doesn’t always have to be

What’s Safe to Cache?

problem_block.get_html() # Can we cache this?

● Authored Content

● User state

● Feature Flags

● ?????

get_html() = +

Think in Terms of Data Transformation

Rendered
ProblemBlock = Authored

Content User State+

Course Outline
for a Student

All Course
Sections and
Subsections

= User-SpecificTrack-Specific+ +

Manage Your Remote Data Access

● View function
○ for loop

■ function
● function

○ function
■ Cache get key 1 (first loop)

■ function
● function

○ function
■ Cache get key 2 (next loop)

This has a global picture.
(Prefetch here.)

These have to
fetch one at a
time.

cache.get(“course_waffle.{feature-1}”)
cache.get(“course_waffle.{feature-1}.{org}”)
cache.get(“course_waffle.{feature-1}.{course_key}”)
Repeat for feature 2, 3, 4, etc. (most are empty)

Looking at the Bigger Picture

Cache Entry:

All Active Features

Cache Entry:

Org Feature Overrides

Cache Entry:

Course Feature Overrides

def my_view(course_id, …):
 CourseWaffleFlag.prefetch(course=course_key)

Explicitly Model Remote Data Access

Caching Isn’t Something You Have to Hide!

68

Thank you!
Any questions?

Dave Ormsbee (dave@tcril.org)

GitHub team: @openedx/perf-interest

mailto:dave@tcril.org

