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Definitions:
What is backend caching?
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Defining Backend Caching

● Python/Django level caching

● Not browser/CDN caching

● Most of our caching is read-through

● Some of our caching is write-through

● Caches are ephemeral

○ Misses do not affect correctness

○ Data replication is not caching 

4



Why Do We Love Caching?
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Increases Speed
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Reduces Costs
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Real Answer: Low Effort and Risk



What are the Drawbacks?

● Code/Testing is More Complex (Global State)

● Behavior is Less Predictable (Cache Misses)

● Memory Leaks



Now to the fun stuff!
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Python Caching:
functools is Your Friend
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Instance Method Caching: @cached_property
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enrollment.verified_mode



Less Magical Version



Use Sentinels to Handle None



Dave’s Object-Oriented Rant: Don’t Hide Remote Data Access

enrollment.get_verified_mode()enrollment.verified_mode

Network Error?
Timeout?

Exceptions?

“Work is happening.”“This is just an attribute.”



Theming & Docker
Case Study

● Adding 4 themes could triple response times

● is_theme_dir invoked thousands of times per view

● Called posix.isdir/listdir → filesystem access

● Page cache was holding things together with VMs

● Poor performance when using Docker deployments

● Refactor to startup initialization…?



Can’t use @cached_property

Slow File I/O



Picking a Caching Solution for Theming

● No Expiration or Invalidation

Themes don’t change for the lifetime of the process

● Small Size / Few Values

Underlying get_theme_dirs mostly called the same way (optional arg)

● Low Latency is Critical

get_theme_dirs is called thousands of times in a request
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Solution: functools.lru_cache

● No Expiration or Invalidation

You can only clear lru_cache, not selectively invalidate keys

● Small Size / Few Values

Default maxsize is 128, kept in memory

● Low Latency is Critical

Runs in-process with a dict underneath–this is as fast as you get
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Using lru_cache
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Clearing lru_cache in Tests
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Theming Caching Results
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20 line PR (edx-platform #31090)

Alejandro Cardenas (Alec4r)
eduNEXT

Before After

avg 3.17 s 633.36 ms

min 133.3 ms 101.13 ms

med 3.56 s 606.90 ms

max 7.38 s 2.15 s

p(90) 4.45 s 1.13 s

p(95) 4.80 s 1.27 s



Django Cache
Framework
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Django Cache Framework in a Nutshell

● get, set, delete

● get_many, set_many, delete_many

● View-level caching less used:

○ cache_page

○ vary_on_headers, vary_on_cookie, cache_control

● Multiple cache backends/named caches.

○ Usually Redis and Memcached
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Cache Invalidation is Hard
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● When to Expire -> Stale Data

● Key Growth -> Too Many Keys to Delete

● Errors -> Cleanup Failures

● Race Conditions -> Inconsistent State



Create New Keys Instead!
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cache.get(f”course_outline.{course_key}.{version}”)

cache.get(f”course_outline.{course_key}”)

cache.delete(f”course_outline.{course_key}”)



Making New Cache Keys is Easy
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● When to Expire -> Never! It’s always Truth.

● Key Growth -> No cleanup

● Errors -> The next request fixes it

● Race Conditions -> Versions are isolated



But wait, where does the 
version come from?
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cache.get(f”course_outline.{course_key}.{version}”)



Memcached/Redis is not Free

The Database is not Lava
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1 ms



Database vs. Cache: Course Outlines
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CourseSection

CourseContext

CourseSectionSequence

CourseSequenceExam

LearningContext

LearningSequence

Course Outline JSON

6 Database Models
~100 rows

~50 ms

1 cache entry
~50K
~1 ms

1 row lookup to generate 
versioned cache key.

2 ms, never stale.



Database vs. Cache: Programs Cache (Old)
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● Cache entry for mapping of Programs -> Course Runs

● Does. Not. Scale.

● DO NOT USE CACHE ENTRIES AS A DATABASE

Cache Entry #1

Dict {
   …,
   …,
   …,   
}

Cache Entry #2

Dict {
   …,
   …,
   …,   
} Django App



Complex Models

Persistent

More Expensive

Simple Key/Value

Ephemeral

Cheaper

Database Cache



A Few Odds and Ends…
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Alt Backend: Django Local Memory Cache

● django.core.cache.backends.locmem.LocMemCache

● Very fast

● Process-specific

● Unlike lru_cache, entries can expire

● Memory Leaks – keys only removed on access

● Less useful than it sounds
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Even Less Useful Backends

● Dummy Cache (for dev)

django.core.cache.backends.dummy.DummyCache

● File Based Cache (don’t use this)

django.core.cache.backends.filebased.FileBasedCache

● Database Cache (don’t use this)

django.core.cache.backends.db.DatabaseCache
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Open edX Caching Utilities
(OEP-22, edx-django-utils)
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Special Thanks to Robert Raposa & Chris Lee (edX/2U)



10,000x slower

Memcached/Redis caching is

than Python caching



Course Waffle Flags
Case Study

● Size: Large number of keys (100K+)
Django LocMemCache leaks memory

● Frequency: Hundreds of lookups per request
Memcached/Redis is too slow

● Lifetime: Less than a minute
@lru_cache has no key timeout/invalidation



RequestCache
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● In-memory cache cleared at the end of a request

● edx_django_utils.cache.middleware.RequestCacheMiddleware



● View function

○ function

■ for loop

● function

○ function

■ function

● function

○ function

■ Cache access

RequestCache vs. @cached_property
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Pass cache 
object through 
all these layers?



Can I Use Memcached/Redis
and RequestCache together?
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RequestCache + Django Cache
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= TieredCache



TieredCache Example: Course Outlines

README: https://tinyurl.com/edx-django-utils-cache

https://tinyurl.com/edx-django-utils-cache


Side Note: Cache Misses and “Falsy” Values

46



Side Note: CachedResponse
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Side Note: Force Cache Miss with TieredCache
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MIDDLEWARE = (
    'edx_django_utils.cache.middleware.RequestCacheMiddleware',
    'django.contrib.sessions.middleware.SessionMiddleware',
    ...
    # TieredCacheMiddleware middleware must come after these.
    'edx_django_utils.cache.middleware.TieredCacheMiddleware',
)

HTTP GET /api/v1/resource?force_cache_miss=true



Testing: CacheIsolationTestCase

● edx-platform: openedx.core.djangolib.testing.utils

● It should be in edx-django-utils

● CacheIsolationMixin and CacheIsolationTestCase

● Resets the Request Cache and Django Caches between tests
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Test That Your Caching Actually Works
● assertNumQueries in uncached and cached states

● Do query counts only on api.py tests, not views.
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Let’s Review!

Deciding our Caching Strategy…
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multiple
requests

# of values?

Calls per Request?

Django Cache API
(Memcached/Redis)

once/few

@lru_cacheprocess

@cached_property
(or equivalent)

simple

request

Access Pattern?

deeply nested

RequestCache

many Lifetime of Value?

Django Cache API
(Local Memory)

few

TieredCache

many



Operational Issues
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Memcached Size Limit
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● max_item_size default is 1 MB

● Raise it to 2 MB



Memcached/Redis and Silent Failures
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● get/set will silently fail if it can’t reach the cache

○ Misconfiguration or server failure

● Takes ~1 minute to reconnect for Memcached

☠



Cache Stampede / Dog-piling
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gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

Memcached



Cache Stampede / Dog-piling
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gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

gunicorn worker

Memcached

Latency ↑↑↑↑↑

Throughput ↓↓↓↓↓



Cache Stampede Solution 1: Add Jitter
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cache.set(cache_key, timeout=timeout)

jitter = random.randint(0, 300)
cache.set(cache_key, timeout=timeout + jitter)



Cache Stampede Solution: Replicate Data
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gunicorn worker

Memcached
External Service

Complex Data Models

S3



Cache Stampede Solution 2: Replicate Data
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gunicorn worker

Memcached
Simple Data Model

celery worker

External Service

Complex Data Models

S3



Load Balancing Course-based Cache Keys
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hash(cache_key)

Memcached 1 CPU

Memcached 2 CPU

Memcached 3 CPU



Distribute With Randomization?
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hash(
  cache_key +
  randint(1,10)
)

Memcached 1 CPU

Memcached 2 CPU

Memcached 3 CPU



Design for Caching
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It doesn’t always have to be



What’s Safe to Cache?

problem_block.get_html()  # Can we cache this?

● Authored Content

● User state

● Feature Flags

● ?????

get_html() = +



Think in Terms of Data Transformation

Rendered 
ProblemBlock = Authored 

Content User State+

Course Outline 
for a Student

All Course 
Sections and 
Subsections

= User-SpecificTrack-Specific+ +



Manage Your Remote Data Access

● View function
○ for loop

■ function
● function

○ function
■ Cache get key 1 (first loop)

■ function
● function

○ function
■ Cache get key 2 (next loop)

This has a global picture.
(Prefetch here.)

These have to 
fetch one at a 
time.



cache.get(“course_waffle.{feature-1}”)
cache.get(“course_waffle.{feature-1}.{org}”)
cache.get(“course_waffle.{feature-1}.{course_key}”)
# Repeat for feature 2, 3, 4, etc. (most are empty)

Looking at the Bigger Picture

Cache Entry:

All Active Features

Cache Entry:

Org Feature Overrides

Cache Entry:

Course Feature Overrides

def my_view(course_id, …):
    CourseWaffleFlag.prefetch(course=course_key)



Explicitly Model Remote Data Access

Caching Isn’t Something You Have to Hide!
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Thank you!
Any questions?

Dave Ormsbee (dave@tcril.org)

GitHub team: @openedx/perf-interest

mailto:dave@tcril.org

