An Opinionated Vision for
Open edX Extensibility and
Customization

David Joy
Learning Platform Architect at edX/2U

OPEN Z .



Goals
-

(Also our agenda.)

OPEN Z .



How do we extend the
Open edX platformin a
sustainable way?

Let’s try to answer
this question.



How?

1. Define
evaluation criteria

¥

3. Identify
problem areas

2. Audit
our capabilities

) ¢

4. Suggest
actions

OPENZ .



Some caveats

This is a huge topic.

It's complex.

Breaking it down is difficult.

| certainly didn’t get everything right!

This should be the beginning of a
conversation.

(Trying to see the forest for the trees)

OPEN Z .



Where I'm coming from

e edX, 2019-2022: Working on the
micro-frontend platform
o MFE configurability
o Internationalization
o Branding and theming
o Component customization
o Plugins and LTI
o 2U, 2022-Present: Focused on 2U’s
architectural relationship to the
platform :

d&s This guy ds at Open edX 2019
talking about
frontend re-platforming OPENpy

(that blazer tho) @m



There was a survey for this talk

Sent out March 16

Focused on difficulty and rarity

17 respondents (I'll take it!)

Probably not statistically significant
But definitely showed some patterns

OPENZ .



% m Define



“Make the common
stuff easy and make
the uncommon stuff
possible.”

-Steven Burch

Open edX Conference
2019 during the Theming
Advisory Group meeting



10

Turn it into some quadrants

Hard

Easy

©

Invest

Acceptable?

Stop or promote

_________________.'_________________

Common

OPEN, .
Rare Em



1

Categories: What are we extending?

O / Y

Backend Frontend Content Cross-service

(o]

PEN .



12

Methods: How are we extending it?

Configuration

)
~

Interfaces .

Plugins

*

Overrides




13

Methods: How are we extending it?

Configuration

)
~

Interfaces .

Plugins

Use existing behavior *

Overrides




14

Methods: How are we extending it?

‘ Modify existing behavior

Configuration

)
~

Interfaces .

Use existing behavior




15

Methods: How are we extending it?

‘ Modify existing heavior

Configuration

)
~

Interfaces .

Plugins
Use existing behavior

*

Overrides
Deficiencies in config and interfaces

result in more plugins and overrides!




16

Malcolm called it




17

Methods: How are we extending it?

Configuration

)
~

Interfaces

We want simple things to be common, Overrides

and complex ones to be rare!




How can we evaluate ease of use?

® v

Approachability Maintainability

B Y

Documentability Supportability




How can we evaluate ease of use?
4 I

Plugin 9 .

Authors Approachability Maintainability

N /

B Y

Documentability Supportability




How can we evaluate ease of use?

4 I
Plugin 9 .
ALERE Approachability Maintainability
\ %
4 I
Platform 1 7
WETIETEIES B
Documentability Supportability

N /




How can we evaluate ease of use?

4 I
Plugin e .
ALERE Approachability Maintainability
\ %
4 I
Platform 1 ?‘
WETIETEIES B
Documentability Supportability

N /




Evaluation criteria summary

{3 Backend Frontend
Categories . . _

.~ Content @/Cross-service

B Configuration ) Interfaces
Methods

Plugins ¥ Overrides

@ Approachability 18 Documentability
Ease of Use

% Supportability W Maintainability




B Audit
our capabilities




Audit by B Y
category 1. Configuration 2 Interfaces

: w

3. Plugins 4. Overrides

OPEN Z .



B Configuration
% v 9



26

B Configuration (1 of 2)

Django Settings
{3 Backend

Common Rare Easy Hard

e Create a file that contains customized
versions of the settings you want to
configure.

e Multi-service configuration overlap and
layering creates complexity.

0K Approachability

¥ Maintainability

0K Documentability
Supportability

How do |
read this?

N

OPENZ .



27

B Configuration (1 of 2)

Django Settings
{3 Backend

Common Rare Easy Hard

e Create a file that contains customized
versions of the settings you want to
configure.

e Multi-service configuration overlap and
layering creates complexity.

0K Approachability

¥ Maintainability

0K Documentability
Supportability

| 1]

Survey results
0 = Very Easy/Common
3 = Very Hard/Rare

How does it work?

Critique

Grading

OPENZ .



28

B Configuration (1 of 2)

Django Settings
{3 Backend

Common Rare Easy Hard

e Create a file that contains customized
versions of the settings you want to
configure.

e Multi-service configuration overlap and
layering creates complexity.

0K Approachability

¥ Maintainability

0K Documentability
Supportability

OPENZ .



29

B Configuration (1 of 2)

Django Settings
{3 Backend

Common Rare Easy Hard

e Create a file that contains customized
versions of the settings you want to
configure.

e Multi-service configuration overlap and
layering creates complexity.

0K Approachability

¥ Maintainability

0K Documentability
Supportability

Micro-frontend Environment Variables
Frontend

Common Rare Easy Hard

C S (

e Supply variables on the command-line when
building the MFE or use the MFE config API
for runtime variables.

e Only strings! Command-line is error prone
and unintuitive.

Approachability
0K Maintainability
¥ Documentability

W Supportability 0%@



30

B Configuration (2 of 2)

Backend Translations
{3 Backend

Common Rare Easy Hard

C NN ( s

e Create .po files for the translations to add,
either via Transifex, Tutor, or Forking

e Tutor makes this pretty easy! Ideally
services would copy, reducing complexity.

¥ Approachability
¥ Maintainability
0K Documentability
¥ Supportability

Micro-frontend Translations
Frontend

Common Rare Easy Hard

I (1

e Tutor can edit translations, but not add new
ones. New locales not possible without
forking.

e Desperately needs investment.

0K Approachability

OK Maintainability
Documentability
Supportability

OPENZ .



SN ¥ Interface



32

¥ Interface (1 of 3)

REST APIs
&JCross-service

Common Rare Easy Hard

C IS ( N

e Make arequest to a known REST API
endpoint.

e Doc and discoverability are current
challenges. Inconsistent versioning strategy
hampers maintainability.

W2 Approachability
Maintainability
0K Documentability

0K Supportability

LTI
Frontend &, Content

Common Rare Easy Hard

C S (

e Create a tool that satisfies the LTI spec and
configure platform to launch it. Tools are
sandboxed in iframe.

e |t's a standard! Issues often affect user
experience. Encourage broader adoption.

Approachability

¥ Maintainability
0K Documentability

W Supportability 0%@



33

¥ Interface (2 of 3)

Hooks Extension Framework Events

{3 Backend
Common Rare Easy Hard
— N . N

e Write a receiver in a Django App Plugin to
receive Django signal-based events.

e Great work! Decouples extensions from

core. Requires coding. Stay vigilant to keep
events idiomatic. What about versioning?

¥ Approachability
0K Maintainability
¥ Documentability

W Supportability

Event Bus
&JCross-service

Common Rare Easy Hard

[ B C 1

e Write an event consumer to subscribe and
process events off the bus.

e Finally! Get on the bus! Same notes as
HEFE to the left.

Approachability
W Maintainability
0K Documentability
W Supportability

OPENZ .



34

¥ Interface (3 of 3)

Custom JavaScript Problems (jsinput)

. Content
Common Rare Easy Hard

e Create JS problem, upload in Files &
Uploads, configure in Studio

e Iframing these problems keeps them
sandboxed and interface-like. Pythonin a
script tag is odd.

0K Approachability
0K Maintainability
0K Documentability
0K Supportability

Micro-frontend Service Implementations
Frontend

Common Rare Easy Hard

C— e ¥

e Write a logging or analytics implementation
that satisfies the interface. Then cry cause
you can’t use it.

e The limitations in MFE env variables make it
impossible to configure this short of forking.

Approachability

Maintainability
¥ Documentability

Supportability

OPENZ .



Plugin



36

Plugin (1 of 2)

XBlocks
. Content

Common Rare Easy Hard

C S ( N

e Create and install an XBlock that uses the
XBlock API.

e For being so common, is a complex
technique. Sandboxing is a problem.

0K Approachability
0K Maintainability
0K Documentability
0K Supportability

Django App Plugins
{3 Backend

Common Rare Easy Hard

C S ( s

e Create a pip-installed Django app and the
Django project will automatically load it.

e Reduces boilerplate and the need to
fork/add custom configuration. Sandboxing
is a problem.

W2 Approachability
0K Maintainability
¥ Documentability

W Supportability 0%@



37

Plugin (2 of 2)

Hooks Extension Framework Filters

{3 Backend
Common Rare Easy Hard
— N . N

e Write a PipelineStep and configure to run on
existing filter pipeline.

e Potentially invasive modification - powerful
but risky. Discrete set of extension points.

W Approachability
0K Maintainability
¥ Documentability
W Supportability

OPENZ .



SN ¥ Override



39

¥ Override (1 of 2)

Comprehensive Theming
{¥Backend & [E Frontend

Common Rare Easy Hard

(S (I

e Create and load a theme repo which is
overlaid on default frontend code.

e Incredibly powerful, but invasive. Requires
domain knowledge, very risky for something
so important.

Approachability

Maintainability
0K Documentability
0K Supportability

Micro-frontend Branding
Frontend

Common Rare Easy Hard

C IS (1=

e Create brand package and alias in as brand
dependency when building MFE.

e Isolated to SASS/CSS, but exposes entire
stylesheet. Expose config-like subset?

0K Approachability
OK Maintainability
¥ Documentability
W Supportability

OPENZ .



40

¥ Override (2 of 2)

Micro-frontend Component Overrides
Frontend

Common Rare Easy Hard

C_ s (1=

e Headers and footers. Fork package and edit,
alias in as frontend-component-*
dependency when building MFE.

e Effectively forking but with some contracts.

Approachability
0K Maintainability
0K Documentability
0K Supportability

Forking
Bd® O Anything
Common Rare Easy Hard

C S ( =

e Fork code in git. Edit. Cry when you need
to merge or rebase on upstream changes.

e Forking should be the customization
mechanism of last resort - damningly
common. Barrier to upgrading the platform.

Approachability
Maintainability
Documentability

Supportability 0%@



% Identify



Ease of Use Scores

Config

Interfaces

Scoring: W& 2

Plugins

k1 >0

Overrides

Approachability

50% (4/8)

42% (5/12)

83% (5/6)

12% (1/8)

Maintainability

75% (6/8)

50% (6/12)

50% (3/6)

25% (2/8)

Documentability

50% (4/8)

66% (8/12)

83% (5/6)

50% (4/8)

Supportability

50% (4/8)

66% (8/12)

83% (5/6)

50% (4/8)




Score Averages

Config

Interfaces

Scoring: W& 2

Plugins

K1 >O

Overrides

Approachability

50% (4/8)

42% (5/12)

83% (5/6)

12% (1/8)

Maintainability

75% (6/8)

50% (6/12)

50% (3/6)

25% (2/8)

Documentability

50% (4/8)

66% (8/12)

83% (5/6)

50% (4/8)

Supportability

50% (4/8)

56%

66% (8/12)

96%

83% (5/6)

/5%

50% (4/8)

34%




Survey Summary

3 .
|
|
|
1 |
|
Hard |
— IMFE o i = Event Bus
. Y verrides
: = Hooks
15 - Fopfing______ o
- Dj. ApD Bl |
= REST APS 0" |
~T+ Dj. Settings = BE Translations :
|
Easy |
|
|
|
|
| | | | | |
0 I I I I I I

Common 1.5 Rare 3




Survey Category Averages

3

Hard

1.5 —

Easy

Common

1.5




Survey Category Averages

3T |
© Invest | @® Acceptable
|
T i
Hard |
|
— |
. I Y
¥ Overrides'! N
. Interfaces
— e
|
|
& Config Plugins
e |
Easy i
|
W Good i ¥ Stop or "Promote
|
| | | | | |
0 | | | | | |

Common 1.5 Rare 3




Invest in fundamentals

33— |
© Invest | @ Acceptable
|
T |
Hard |
- i
¥ Overrides'!
|
(- ERE S ———
> [
|
. Plugins
+ ¥ :
Easy Interfaces |
—+ B Confi |
E d W Good i ¥ Stop or "Promote
|
| | | | | |
0 | | | | | |

Common 1.5 Rare 3




To make modifying less common

33— |
© Invest | @ Acceptable
|
T |
Hard |
- i
| - ¥ Overrides
|
(- ERE S ———
I »
I .
a | Plugins
Easy Interfaces |
—+ B Confi |
L d # Good i ¥ Stop or "Promote
|
| | | | | |
0 | | | | | |

Common 1.5 Rare 3




Oh no, am | this guy?

33— b <
" : @® Acceptable
Hard
¥ Overrides
13 A V w8 -
casy / .
4 B Config
¥ Stop or *®Promote
| | | | | |
0 | | | | | |

Common 1.5 Rare 3




Coverage (Category vs. Method)

Config Interfaces Plugins Overrides
Backend * % ' ¢ ) & ¢ *
Frontend ) & ¢ * % * %
Cross-service w %
Content ) ¢ *




Coverage

Config Interfaces Plugins Overrides
Backend * % ' ¢ ) & ¢ *
Frontend ) & ¢ * % * %
Cross-service ~ds * %
Content ~ds * ) ¢




Coverage

Config Interfaces Plugins Overrides
Backend * % ' ¢ ) & ¢ *
Frontend ) & ¢ * X * %
Cross-service ~ds w % N\
Content ~ds * ) ¢ (\J




Coverage

Config Interfaces Plugins Overrides
Backend * % * ) & *
Frontend ) & ¢ * X * %
Cross-service ~ds * (]
Content ~ds * * N\)




% Suggest



B Configuration

Django Settings: Simplify layers

MFE Settings: Allow JavaScript config

Backend Translations: Service-level support for modifications
MFE Translations: Dynamic list of languages, support for
modifications




§ Interfaces

e Rest APIs: Versioning! Discoverable documentation.

e LTI: Keep config simple and approachable

e Hooks Events: Invest in event creation best practices and
standards, versioning

e EventBus: Invest in cookie cutters, event creation best
practices and standards, versioning

e Custom JS Problems: Rethink grading and modernize

e MFE Service Implementations: Finish the feature!




Plugins

XBlocks: Modernization and simplification, frontend XBlocks,
import linting

Django App Plugins: Import linting to improve maintainability
Hooks Filters: Document supported pipelines well, versioning




Whither Art Thou, Plugins?

Frontend plugins would alleviate some of our need for
frontend overrides.

Since we don’t have them, comprehensive theming,
component overrides, and forking are taking their place.
What does a cross-service plugin look like? Maybe
pipeline-able APIs, like hooks filters but for REST APIs and
events.




¥ Overrides

e Comprehensive Theming: Invest in MFE capabilities,
deprecate

e MFE Branding: Design tokens, expose config-like subset of
variables

e MFE Component Overrides: Re-think with modular MFEs,
frontend plugins

e Forking: Flesh out other capabilities to minimize usage




Extensibility/Customization Goals

e Configuration to get simpler, encouraging adoption and
localization.

e Interfaces become more approachable and maintainable to
encourage their use and take pressure off of overrides.

e More options for plugins in the frontend to alleviate many of
our needs for overrides.

e Overrides to become methods of last resort.

Goal is to decompose and simplify mechanisms for common
needs, leaving invasive mechanisms for uncommon/invasive
changes.




Capability Creation Best Practices

e Work to simplify

e Overrides: easy to support, a nightmare to maintain

e Decompose blanket overrides into config, interfaces, and
plugins

e Plugin frameworks should rely on interfaces and config to stay
approachable

e Many interfaces are configurable too

e We need to invest in MFE interfaces and frontend plugins




- Thank you!



