
An Opinionated Vision for
Open edX Extensibility and
Customization

Open edX Conference 2023

David Joy
Learning Platform Architect at edX/2U

Goals
of this talk
(Also our agenda.)

2

How do we extend the
Open edX platform in a
sustainable way?

3

Let’s try to answer
this question.

How?

📊
1. Define

evaluation criteria

4

📋
2. Audit

our capabilities

💥
3. Identify

problem areas

⭐
4. Suggest

actions

Some caveats

● This is a huge topic.
● It’s complex.
● Breaking it down is difficult.
● I certainly didn’t get everything right!

This should be the beginning of a
conversation.

5

(Trying to see the forest for the trees)

Where I’m coming from

● edX, 2019-2022: Working on the
micro-frontend platform
○ MFE configurability
○ Internationalization
○ Branding and theming
○ Component customization
○ Plugins and LTI

● 2U, 2022-Present: Focused on 2U’s
architectural relationship to the
platform

6

👍 This guy 👍 at Open edX 2019
talking about

frontend re-platforming
(that blazer tho)

There was a survey for this talk

● Sent out March 16
● Focused on difficulty and rarity
● 17 respondents (I’ll take it!)
● Probably not statistically significant
● But definitely showed some patterns

7

📊 Define
evaluation criteria

8

“Make the common
stuff easy and make
the uncommon stuff
possible.”

-Steven Burch
Open edX Conference
2019 during the Theming
Advisory Group meeting

9

Turn it into some quadrants

10

Easy

Common

Hard

Rare

✅
Good

😐
Acceptable?

🎯
Invest

✋/ 📢
Stop or promote

Categories: What are we extending?

11

⚙
Backend

💞
Cross-service

🖼
Frontend

🖋
Content

Methods: How are we extending it?

12

📜
Configuration 👋

Interfaces 🔌
Plugins 💥

Overrides

Methods: How are we extending it?

13

📜
Configuration 👋

Interfaces 🔌
Plugins 💥

Overrides

Use existing behavior

Methods: How are we extending it?

14

📜
Configuration 👋

Interfaces 🔌
Plugins 💥

Overrides

Use existing behavior

Modify existing behavior

Methods: How are we extending it?

15

📜
Configuration 👋

Interfaces 🔌
Plugins 💥

Overrides

Use existing behavior

Modify existing heavior

Deficiencies in config and interfaces
result in more plugins and overrides!

Malcolm called it

16

👋
Interfaces 🔌

Plugins

Deficiencies in config and interfaces
result in more plugins and overrides!

Methods: How are we extending it?

17

📜
Configuration 👋

Interfaces 🔌
Plugins 💥

Overrides

Common

Rare
We want simple things to be common,
and complex ones to be rare!

How can we evaluate ease of use?

😄
Approachability

✅
Maintainability

🛠
Supportability

📚
Documentability

How can we evaluate ease of use?

😄
Approachability

✅
Maintainability

🛠
Supportability

📚
Documentability

Plugin
Authors

How can we evaluate ease of use?

😄
Approachability

✅
Maintainability

🛠
Supportability

📚
Documentability

Plugin
Authors

Platform
Maintainers

How can we evaluate ease of use?

😄
Approachability

✅
Maintainability

🛠
Supportability

📚
Documentability

Plugin
Authors

Platform
Maintainers

Supports

Evaluation criteria summary
⚙ Backend

💞Cross-service

🖼 Frontend

🖋 Content

📜 Configuration 👋 Interfaces

🔌 Plugins 💥 Overrides

😄 Approachability

✅ Maintainability🛠 Supportability

📚 Documentability

Categories

Methods

Ease of Use

📋 Audit
our capabilities

23

Audit by
category

24

📜
1. Configuration

👋
2. Interfaces

🔌
3. Plugins

💥
4. Overrides

📜 Configuration
capabilities

25

How do I
read this?

📜 Configuration (1 of 2)

26

Django Settings
⚙ Backend

● Create a file that contains customized
versions of the settings you want to
configure.

● Multi-service configuration overlap and
layering creates complexity.

🆗 Approachability
✅ Maintainability
🆗 Documentability
❌ Supportability

Common Rare Easy Hard

📜 Configuration (1 of 2)

27

Django Settings
⚙ Backend

● Create a file that contains customized
versions of the settings you want to
configure.

● Multi-service configuration overlap and
layering creates complexity.

🆗 Approachability
✅ Maintainability
🆗 Documentability
❌ Supportability

Common Rare Easy Hard Survey results
0 = Very Easy/Common
3 = Very Hard/Rare

How does it work?

Critique

Grading

📜 Configuration (1 of 2)

28

Django Settings
⚙ Backend

● Create a file that contains customized
versions of the settings you want to
configure.

● Multi-service configuration overlap and
layering creates complexity.

🆗 Approachability
✅ Maintainability
🆗 Documentability
❌ Supportability

Common Rare Easy Hard

📜 Configuration (1 of 2)

29

Django Settings
⚙ Backend

● Create a file that contains customized
versions of the settings you want to
configure.

● Multi-service configuration overlap and
layering creates complexity.

🆗 Approachability
✅ Maintainability
🆗 Documentability
❌ Supportability

Common Rare Easy Hard

Micro-frontend Environment Variables
🖼 Frontend

● Supply variables on the command-line when
building the MFE or use the MFE config API
for runtime variables.

● Only strings! Command-line is error prone
and unintuitive.

❌ Approachability
🆗 Maintainability
✅ Documentability
✅ Supportability

Common Rare Easy Hard

📜 Configuration (2 of 2)

30

Micro-frontend Translations
🖼 Frontend

● Tutor can edit translations, but not add new
ones. New locales not possible without
forking.

● Desperately needs investment.

🆗 Approachability
🆗 Maintainability
❌ Documentability
❌ Supportability

Common Rare Easy Hard

Backend Translations
⚙ Backend

● Create .po files for the translations to add,
either via Transifex, Tutor, or Forking

● Tutor makes this pretty easy! Ideally
services would copy, reducing complexity.

✅ Approachability
✅ Maintainability
🆗 Documentability
✅ Supportability

Common Rare Easy Hard

👋 Interface
capabilities

31

👋 Interface (1 of 3)

32

REST APIs
💞Cross-service

● Make a request to a known REST API
endpoint.

● Doc and discoverability are current
challenges. Inconsistent versioning strategy
hampers maintainability.

✅ Approachability
❌ Maintainability
🆗 Documentability
🆗 Supportability

Common Rare Easy Hard

LTI
🖼 Frontend & 🖋 Content

● Create a tool that satisfies the LTI spec and
configure platform to launch it. Tools are
sandboxed in iframe.

● It’s a standard! Issues often affect user
experience. Encourage broader adoption.

❌ Approachability
✅ Maintainability
🆗 Documentability
✅ Supportability

Common Rare Easy Hard

👋 Interface (2 of 3)

33

Hooks Extension Framework Events
⚙ Backend

● Write a receiver in a Django App Plugin to
receive Django signal-based events.

● Great work! Decouples extensions from
core. Requires coding. Stay vigilant to keep
events idiomatic. What about versioning?

✅ Approachability
🆗 Maintainability
✅ Documentability
✅ Supportability

Common Rare Easy Hard

Event Bus
💞Cross-service

● Write an event consumer to subscribe and
process events off the bus.

● Finally! Get on the bus! Same notes as
HEFE to the left.

❌ Approachability
✅ Maintainability
🆗 Documentability
✅ Supportability

Common Rare Easy Hard

👋 Interface (3 of 3)

34

Micro-frontend Service Implementations
🖼 Frontend

● Write a logging or analytics implementation
that satisfies the interface. Then cry cause
you can’t use it.

● The limitations in MFE env variables make it
impossible to configure this short of forking.

❌ Approachability
❌ Maintainability
✅ Documentability
❌ Supportability

Custom JavaScript Problems (jsinput)
🖋 Content

● Create JS problem, upload in Files &
Uploads, configure in Studio

● Iframing these problems keeps them
sandboxed and interface-like. Python in a
script tag is odd.

🆗 Approachability
🆗 Maintainability
🆗 Documentability
🆗 Supportability

Common Rare Easy Hard Common Rare Easy Hard

🔌 Plugin
capabilities

35

🔌 Plugin (1 of 2)

36

XBlocks
🖋 Content

● Create and install an XBlock that uses the
XBlock API.

● For being so common, is a complex
technique. Sandboxing is a problem.

🆗 Approachability
🆗 Maintainability
🆗 Documentability
🆗 Supportability

Django App Plugins
⚙ Backend

● Create a pip-installed Django app and the
Django project will automatically load it.

● Reduces boilerplate and the need to
fork/add custom configuration. Sandboxing
is a problem.

✅ Approachability
🆗 Maintainability
✅ Documentability
✅ Supportability

Common Rare Easy Hard Common Rare Easy Hard

🔌 Plugin (2 of 2)

37

Hooks Extension Framework Filters
⚙ Backend

● Write a PipelineStep and configure to run on
existing filter pipeline.

● Potentially invasive modification - powerful
but risky. Discrete set of extension points.

✅ Approachability
🆗 Maintainability
✅ Documentability
✅ Supportability

Common Rare Easy Hard

💥 Override
capabilities

38

💥 Override (1 of 2)

39

Comprehensive Theming
⚙Backend & 🖼 Frontend

● Create and load a theme repo which is
overlaid on default frontend code.

● Incredibly powerful, but invasive. Requires
domain knowledge, very risky for something
so important.

❌ Approachability
❌ Maintainability
🆗 Documentability
🆗 Supportability

Common Rare Easy Hard

Micro-frontend Branding
🖼 Frontend

● Create brand package and alias in as brand
dependency when building MFE.

● Isolated to SASS/CSS, but exposes entire
stylesheet. Expose config-like subset?

🆗 Approachability
🆗 Maintainability
✅ Documentability
✅ Supportability

Common Rare Easy Hard

💥 Override (2 of 2)

40

Micro-frontend Component Overrides
🖼 Frontend

● Headers and footers. Fork package and edit,
alias in as frontend-component-*
dependency when building MFE.

● Effectively forking but with some contracts.

❌ Approachability
🆗 Maintainability
🆗 Documentability
🆗 Supportability

Common Rare Easy Hard

Forking
🌍🌎🌏 Anything

● Fork code in git. Edit. Cry when you need
to merge or rebase on upstream changes.

● Forking should be the customization
mechanism of last resort - damningly
common. Barrier to upgrading the platform.

❌ Approachability
❌ Maintainability
❌ Documentability
❌ Supportability

Common Rare Easy Hard

Identify
problem areas

41

Ease of Use Scores

Approachability

Maintainability

Documentability

Supportability

Config Interfaces Plugins Overrides

50% (4/8)

75% (6/8)

Scoring: ✅ 2 🆗 1 ❌ 0

50% (4/8)

50% (4/8)

42% (5/12)

50% (6/12)

66% (8/12)

66% (8/12)

83% (5/6)

50% (3/6)

83% (5/6)

83% (5/6)

12% (1/8)

25% (2/8)

50% (4/8)

50% (4/8)

Score Averages

Approachability

Maintainability

Documentability

Supportability

Config Interfaces Plugins Overrides

50% (4/8)

75% (6/8)

Scoring: ✅ 2 🆗 1 ❌ 0

50% (4/8)

50% (4/8)

42% (5/12)

50% (6/12)

66% (8/12)

66% (8/12)

83% (5/6)

50% (3/6)

83% (5/6)

83% (5/6)

12% (1/8)

25% (2/8)

50% (4/8)

50% (4/8)

56% 56% 75% 34%

▫XBlocks

▫Forking

▫Dj. App Plugins▫MFE Vars

▫MFE Overrides
▫Comp Theme ▫MFE Brand▫MFE Translations

Survey Summary

Easy

Common

Hard

Rare1.5 3
0

1.5

3

▫REST APIs

▫LTI

▫Dj. Settings ▫BE Translations

▫Event Bus

▫Hooks
▫JSInput

Survey Category Averages

Easy

Common

Hard

Rare1.5 3
0

1.5

3

📜

👋

🔌

💥

Survey Category Averages

Easy

Common

Hard

Rare1.5 3
0

1.5

3

📜 Config

👋
Interfaces

🔌
Plugins

💥 Overrides

😐 Acceptable

✋ Stop or 📢Promote

🎯 Invest

✅ Good

Invest in fundamentals

Easy

Common

Hard

Rare1.5 3
0

1.5

3

📜 Config

👋
Interfaces

🔌
Plugins

💥 Overrides

😐 Acceptable

✋ Stop or 📢Promote

🎯 Invest

✅ Good

To make modifying less common

Easy

Common

Hard

Rare1.5 3
0

1.5

3

📜 Config

👋
Interfaces

🔌
Plugins

💥 Overrides

😐 Acceptable

✋ Stop or 📢Promote

🎯 Invest

✅ Good

Oh no, am I this guy?

Easy

Common

Hard

Rare1.5 3
0

1.5

3

📜 Config

👋
Interfaces

🔌
Plugins

💥 Overrides

😐 Acceptable

✋ Stop or 📢Promote

🎯 Invest

(It me?)

Coverage (Category vs. Method)

Backend

Frontend

Cross-service

Content

Config Interfaces Plugins Overrides

⭐⭐

⭐⭐

⭐

⭐⭐

⭐⭐

⭐

⭐⭐

⭐

⭐

⭐⭐

Coverage

Backend

Frontend

Cross-service

Content

Config Interfaces Plugins Overrides

⭐⭐

⭐⭐

⭐

⭐⭐

⭐⭐

⭐

⭐⭐

⭐

⭐

⭐⭐

~👍

~👍

Coverage

Backend

Frontend

Cross-service

Content

Config Interfaces Plugins Overrides

⭐⭐

⭐⭐

⭐

⭐⭐

⭐⭐

⭐

⭐⭐

⭐

⭐

⭐⭐

~👍

~👍 🚫

🚫

Coverage

Backend

Frontend

Cross-service

Content

Config Interfaces Plugins Overrides

⭐⭐

⭐⭐

⭐

⭐⭐

⭐⭐

⭐

⭐⭐

⭐

⭐

⭐⭐?~👍

~👍 🚫

🚫

Suggest
actions

54

● Django Settings: Simplify layers
● MFE Settings: Allow JavaScript config
● Backend Translations: Service-level support for modifications
● MFE Translations: Dynamic list of languages, support for

modifications

📜 Configuration

● Rest APIs: Versioning! Discoverable documentation.
● LTI: Keep config simple and approachable
● Hooks Events: Invest in event creation best practices and

standards, versioning
● Event Bus: Invest in cookie cutters, event creation best

practices and standards, versioning
● Custom JS Problems: Rethink grading and modernize
● MFE Service Implementations: Finish the feature!

👋 Interfaces

● XBlocks: Modernization and simplification, frontend XBlocks,
import linting

● Django App Plugins: Import linting to improve maintainability
● Hooks Filters: Document supported pipelines well, versioning

🔌 Plugins

● Frontend plugins would alleviate some of our need for
frontend overrides.

● Since we don’t have them, comprehensive theming,
component overrides, and forking are taking their place.

● What does a cross-service plugin look like? Maybe
pipeline-able APIs, like hooks filters but for REST APIs and
events.

Whither Art Thou, Plugins?

● Comprehensive Theming: Invest in MFE capabilities,
deprecate

● MFE Branding: Design tokens, expose config-like subset of
variables

● MFE Component Overrides: Re-think with modular MFEs,
frontend plugins

● Forking: Flesh out other capabilities to minimize usage

💥 Overrides

Extensibility/Customization Goals

● Configuration to get simpler, encouraging adoption and
localization.

● Interfaces become more approachable and maintainable to
encourage their use and take pressure off of overrides.

● More options for plugins in the frontend to alleviate many of
our needs for overrides.

● Overrides to become methods of last resort.

Goal is to decompose and simplify mechanisms for common
needs, leaving invasive mechanisms for uncommon/invasive
changes.

● Work to simplify
● Overrides: easy to support, a nightmare to maintain
● Decompose blanket overrides into config, interfaces, and

plugins
● Plugin frameworks should rely on interfaces and config to stay

approachable
● Many interfaces are configurable too
● We need to invest in MFE interfaces and frontend plugins

Capability Creation Best Practices

Thank you!
Q&A

62

