
For internal 2U eyes only. Not to be shared externally. 1

Commerce Coordinator: Connecting
Open edX with Commerce

Open edX Conference 2023
Lightning Talks: Developing & Operating

tinyurl.com/oec-2023-ecomm-lightning

https://tinyurl.com/oec-2023-ecomm-lightning

Phil Shiu
Software Engineer
Purchase Squad

@pshiu • •

Hello!
Glenn Martin

Principal Software Engineer
Purchase Squad

@gmartin
@grmartin

2tinyurl.com/oec-2023-ecomm-lightning

[Glenn]
● Hello everybody, good afternoon!
● (Glenn, Phil introduce themselves)
● This is our Ecommerce lightning talk.

https://tinyurl.com/oec-2023-ecomm-lightning

● For background and rationale for the move to Commerce Coordinator,
please feel free to review our talk from Open edX 2022: Ecomm for edX.

● Ecommerce is in maintenance mode, Stripe will be available as a
processor in the Palm release.

● And while Ecommerce (in its current form) is still going away… the
community feedback on Coordinator’s complexity, has encouraged us to
think critically about how to simplify it!

Alright, what have we been up to?

3tinyurl.com/oec-2023-ecomm-lightning

[Glenn]
● E-commerce has been on a long journey in the Open edX project
● As a community, we need to figure out where to go next.
● Currently, we are working on a solution called Commerce Coordinator.

○ It’s meant to be a request router and transformer
○ See our slides at the conference last year!

● So what have we been up to?
○ We actually got sidetracked because there was an pressing need to

migrate to another payment processor at our company, 2U
○ So we had to finish that up, and the advantage is now Stripe is

available as a payment processor on master and we hope the
community will be able to see it in Palm.

○ Please check out those release notes if you haven’t already.
● But right now, we are back on the Ecommerce Deprecation & Replacement

Project.
○ While Ecommerce and its current form is still going away…
○ We’ve received good feedback that we need to simplify the

Coordinator and are thinking critically how to simplify it.
○ To be completely honest, we don’t have an exact answer right now in

terms of how the Coordinator is going to be simpler and how it could
meet everyone’s needs.

○ But we wanted to give a shot at showing briefly what we have so far,
what a typical flow in the Coordinator might look like

https://docs.google.com/presentation/u/0/d/1rbm0hSidn7Zs2mf2n0n232-QZKbHGcKtKeFtzeukiDY/edit
https://discuss.openedx.org/t/ecommerce-changes-to-stripe-payment-processor/9457
https://tinyurl.com/oec-2023-ecomm-lightning

An example: Fulfillment

4tinyurl.com/oec-2023-ecomm-lightning

[Glenn]
● So let’s start with an example, fulfillment.
● The idea behind fulfillment is that after a user pays for a course, the operator

needs to give the user access to the course they have paid for.
● We call that action “fulfillment”. Other may call it “enrollment”.

https://tinyurl.com/oec-2023-ecomm-lightning

class LMSAPIClient(BaseEdxOAuthClient):
 """
 API client for calls to the edX LMS service.
 """

 def enroll_user_in_course(self, enrollment_data):
 """
 Send a POST request to LMS Enrollment API endpoint
 Arguments:
 enrollment_data: dictionary to send to the API resource.
 Returns:
 dict: Dictionary representation of JSON returned from API.
 """
 return self.post(
 url=self.api_enrollment_base_url,
 json=enrollment_data,
 timeout=settings.FULFILLMENT_TIMEOUT
)

5

apps/lms/clients.py

tinyurl.com/oec-2023-ecomm-lightning

[Glenn]
● So let’s work backwards, starting with our goal.
● In our LMS we have API endpoints that allow a user or an external system to

place a user into a course.
● You can see this code is reaching out to that endpoint and sending a JSON

object called enrollment_data

https://tinyurl.com/oec-2023-ecomm-lightning

 enrollment_data = {
 'user': user.username,
 'mode': course_mode,
 'is_active': True,
 'course_details': {
 'course_id': course_id
 },
 'email_opt_in': email_opt_in,
 'enrollment_attributes': [
 {
 'namespace': 'order',
 'name': 'order_number',
 'value': order_number,
 },
 {
 'namespace': 'order',
 'name': 'order_placed',
 'value': date_placed,
 }
]

 }

6

enrollment_data JSON

tinyurl.com/oec-2023-ecomm-lightning

[Glenn]
● Here’s what enrollment_data looks like.
● You can see it’s just a dictionary with information about how we want to do

the fulfillment.

https://tinyurl.com/oec-2023-ecomm-lightning

@shared_task()
def fulfill_order_placed_send_enroll_in_course_task(course_id, course_mode,
date_placed, edx_lms_user_id, email_opt_in, order_number, provider_id):

 user = User.objects.get(lms_user_id=edx_lms_user_id)

 enrollment_data = {...}

 return LMSAPIClient().enroll_user_in_course(enrollment_data)

7

apps/lms/signals/tasks.py

CC_SIGNALS = {
 'commerce_coordinator.apps.your-app.signals.fulfill_order_placed_signal': [
 'commerce_coordinator.apps.lms.signals.fulfill_order_placed_send_enroll_in_course',
],
}

settings/base.py

tinyurl.com/oec-2023-ecomm-lightning

[Glenn]
● We send enrollment_data from a Celery task.
● It’s very simple, this is literally a copy and paste of what we have in our code

right now
● This Celery task allows us to queue up the requests for fulfillment.

○ Why: We needed to add this because as a larger operator we have a
lot of fulfillment requests and historically this fulfillment endpoint has
been a very slow operation for us

○ How we solve: So we have had need of some sort of asynchronous
queue to do this fulfillment so our e-commerce servers do not stall
other requests while waiting for fulfillment

● And this configuration in settings/base.py configures Coordinator to create
a task to fulfill a course every time our backend systems at 2U requests a
fulfillment.

● I think this is the heart of the versatility of the Coordinator: as long as you fire
a signal with the right parameters, any app in the Coordinator can trigger
fulfillment.

● (There’s a bit of code we’re not presenting, but it’s mainly a signal–receiver
pair that is a pass through of parameters. Nothing fancy there, but you can
see the missing slide if you check out our presentation online.)

https://tinyurl.com/oec-2023-ecomm-lightning

@log_receiver(logger)
def fulfill_order_placed_send_enroll_in_course(**kwargs):
 """
 Fulfill the order with a Celery task to LMS to enroll a user in a single
course.
 """
 fulfill_order_placed_send_enroll_in_course_task.delay(
 course_id=kwargs['course_id'],
 course_mode=kwargs['course_mode'],
 date_placed=kwargs['date_placed'],
 edx_lms_user_id=kwargs['edx_lms_user_id'],
 email_opt_in=kwargs['email_opt_in'],
 order_number=kwargs['order_number'],
 provider_id=kwargs['provider_id'],

)

8

apps/lms/signals/receivers.py

from commerce_coordinator.apps.core.signal_helpers import CoordinatorSignal

fulfill_order_placed_signal = CoordinatorSignal()

apps/your-app/signals/signals.py

(There’s a bit of code we’re not presenting, but it’s mainly a signal–receiver pair that is
a pass through of parameters. Nothing very fancy here.)

from commerce_coordinator.apps.core.signal_helpers import format_signal_results

from .serializers import OrderFulfillViewInputSerializer
from .signals import fulfill_order_placed_signal

class OrderFulfillView(APIView):
 def post(self, request):
 params = {
 'course_id': request.data.get('course_id'),
 'course_mode': request.data.get('course_mode'),
 'date_placed': request.data.get('order_placed'),
 'edx_lms_user_id': request.data.get('edx_lms_user_id'),
 'email_opt_in': request.data.get('email_opt_in'),
 'order_number': request.data.get('order_number'),
 'provider_id': request.data.get('provider'),
 }

 serializer = OrderFulfillViewInputSerializer(data=params)

 if serializer.is_valid(raise_exception=True):
 results = fulfill_order_placed_signal.send_robust(
 sender=self.__class__,
 **serializer.validated_data
)
 return Response(format_signal_results(results))

9

apps/your-app/views.py

[MIDDLE: Glenn & Phil]

[Glenn]
● Finally, we have a view. This is where our backend systems at 2U reach out to

request fulfillment of the course.
● All we do is:

○ Get all those parameters that we plug into the enrollment_data
dictionary

○ Validate those are sane values
○ And send the signal

● And we don’t mean to be mysterious about our backend systems: it’s basically
a software like what our ecommerce repo uses, Django Oscar, but instead it’s
in Ruby and it’s called Spree. Let’s not worry about that here; just imagine
your backend system is able to reach out to this endpoint here.

[Phil]
● So one more time, let’s review what happens, this time working forwards

instead of backwards.
● Our financial backend systems hit this OrderFulfillView endpoint you’re seeing

on screen.

@shared_task()
def fulfill_order_placed_send_enroll_in_course_task(course_id, course_mode,
date_placed, edx_lms_user_id, email_opt_in, order_number, provider_id):

 user = User.objects.get(lms_user_id=edx_lms_user_id)

 enrollment_data = {...}

 return LMSAPIClient().enroll_user_in_course(enrollment_data)

10

apps/lms/signals/tasks.py

CC_SIGNALS = {
 'commerce_coordinator.apps.your-app.signals.fulfill_order_placed_signal': [
 'commerce_coordinator.apps.lms.signals.fulfill_order_placed_send_enroll_in_course',
],
}

settings/base.py

[Phil]

In our settings, we’ve configured that signal to be sent to a signal receiver in the
part of Coordinator’s code that talks to LMS.

This fires off a Celery task, which puts the parameters we’ve sent into a queue.

class LMSAPIClient(BaseEdxOAuthClient):
 """
 API client for calls to the edX LMS service.
 """

 def enroll_user_in_course(self, enrollment_data):
 """
 Send a POST request to LMS Enrollment API endpoint
 Arguments:
 enrollment_data: dictionary to send to the API resource.
 Returns:
 dict: Dictionary representation of JSON returned from API.
 """
 return self.post(
 url=self.api_enrollment_base_url,
 json=enrollment_data,
 timeout=settings.FULFILLMENT_TIMEOUT
)

11

apps/lms/clients.py

[Phil]

And when the task in the queue’s turn arrives, the task reaches out to LMS and
sends that enrollment_data dictionary we’ve built using the parameters our
backend system originally sent.

An example: Fulfillment

12tinyurl.com/oec-2023-ecomm-lightning

[Phil]

And so this is the general pattern of what the Coordinator is doing.

https://tinyurl.com/oec-2023-ecomm-lightning

● The architecture lets different companies drop in plugins or IDAs and
provides a common framework for working together on #ecommerce.

● We are trying to migrate the parts of Ecommerce we use to Coordinator,
bit by bit, and will probably be doing this through mid-2024.

○ We are hoping our work will be by nature generalizable enough to
be useful to others in the community.

● A lot of us are writing custom code for ecommerce. Coordinator is a
place to run that code within the Open edX ecosystem.

Why might this be a good idea?

13tinyurl.com/oec-2023-ecomm-lightning

[Phil]

Ok. Why might this be a good idea? Three reasons.
1. We have a place to work together on e-commerce using a single framework

and language
2. We, 2U, are migrating the parts of Ecommerce we use to the Coordinator, and

maybe the community can use that work in some form, whether it’s running
Coordinator in production, or using Coordinator as a reference implementation
for their own code.

a. We are hoping that our work will be able to be generalized to others
in the community.

3. A lot of us have the same problem: where do we run the custom code we
need for selling our courses? Coordinator provides a place for that code to
run.

https://tinyurl.com/oec-2023-ecomm-lightning

● We’ve received clear feedback from the community that there are a lot of
operators that a solution like Coordinator is more overhead than it’s
worth.

● We are trying to think of ways to simplify the Coordinator—simplification
helps both us and the community! Ideas welcome.

But our solution is overly complicated…

14tinyurl.com/oec-2023-ecomm-lightning

[Phil]

But we know our solution is overly complicated.

We met back in July and got a clear message that the Coordinator is too much
overhead for most operators.

We’re trying to continue to think of ways to simplify this architecture.

Internally, we need the Coordinator at 2U because:
● Can’t put it in LMS: Open Source wouldn’t accept code that only applies to

our systems in LMS
● Don’t want to reinvent in Ruby: We could call the LMS directly from Ruby,

but this requires reinventing a lot of Python libraries we’ve already made in
Ruby.

So Coordinator lets us put this logic in Python and transform the incoming requests
into the right shape so that we can fire the request into the open source world.

It sort of becomes the transition zone between closed source that is very particular
to us and only us as an operator, and open source, which is generalizable to
everybody.

But not everyone will need what we are going to need.

https://tinyurl.com/oec-2023-ecomm-lightning

A small illustration: Infrastructure

15

(Runtime Config)

RDBMS
● Coordinator requires:

○ A database
For site configuration, as we do not
store business objection

○ A Celery broker like Redis

○ Memcached

All of these items are used by other Open edX
services (incl. old Ecommerce), but not all
operators need or want a setup like this.

[Phil]

(Will probably not have time to go over this slide, but:)

There are a lot of reasons why it might not work for everybody, but one of them is
infrastructure. Coordinator needs a Celery backend like Redis. Many folks don’t need
or want a Celery backend or Redis.

● Documenting our existing APIs prior state

● Creating sequence diagrams and flow charts documenting future state

● Sharing our work products with tCRIL

What we’re up to now…

16

[Phil]

So what are we up to?

Lots of documentation.

[Click]

We’re doing a lot of work to try to understand what exactly Ecommerce does and
re-organize the parts we use into the Coordinator so that it’s more organized and
systematic.

Because we’re drowning in documentation, we also hope to make tooling to
auto-generate runtime diagrams like the one you see in yellow so it’s really easy to
for folks to see, oh, ok, my setup of the Coordinator allows either the legacy
Ecommerce service or another service called Spree to call the fulfillment endpoint.

And we’ve been sharing all this information with tCRIL so that it can help inform their
projects as we together try to advance the state of Open edX ecommerce with the
community.

● For smaller operators, tCRIL is funding a contribution to help advance
the Open edX platform. This project aims to do some discovery and build
a reference implementation for integration the Open edX platform with
WooCommerce as the commerce system.

● For larger operators or those requiring more custom implementations,
Commerce Coordinator is an option. We are still looking for partners to
help us make this more useful for these more complex operational needs.

● We have common pain points. Examples: adding payment processors,
support for multiple currencies. How can we tackle these subjects
together?

Divining: The future of #ecommerce

17

[Phil]

Alright. So where do we go from here? We don’t know the answer to that. But if I were
to perform a little bit of divination, here’s what I can see from my vantage point. And
others might have additional thoughts as well.

For smaller operators—tCRIL is funding a really cool discovery project that is looking
into wiring WooCommerce with Open edX and make that really easy to setup. So
that’s really exciting work. It’s a kind of blended development model so if you are a
smaller operator and you are interested in WooCommerce, definitely take a look at
that project.

We’re trying our best to help with that project—like we mentioned earlier, we are
sharing our R&D with tCRIL and actually already met a team looking into that work
and were talking shop just last night.

And if you operate any sort of system running Django Oscar ecommerce with Open
edX, or if you’re a larger operator interested in selling courses using Open edX
software, please talk to us, because the message we’ve gotten so far is that there are
not a lot of folks out there interested in the scale we’re working with right now.

And this leads to a very important question: how do we work together on this?

https://discuss.openedx.org/t/tcril-funded-contribution-woocommerce-discovery/9337

For internal 2U eyes only. Not to be shared externally. 18

Vision casting needed:

How are we as a community together going to
collaborate on #ecommerce in open source?

What would a world in which we collaborated even
more closely together on Open edX #ecommerce
look like?

[Phil]

Vision casting is needed.

(read the slide)

We don’t know the answer on this. This is an open question, but I would definitely
challenge everyone in the room to think about these things.

Ecommerce is naturally a very difficult thing to collaborate on because it touches
the revenue model of all of our organizations, and revenue is often where the rubber
hits the road. But I think it’s possible. I have a glimmer of hope that there are
awesome things in the e-commerce world out there. And we need to figure out how
we as a community want to work together to do that.

● NEW: Join us at the Ecommerce Next Step Update on April 26

● NEW: tCRIL Funded Contribution - WooCommerce Discovery

● NEW: Ecommerce: Changes to Stripe payment processor

● NEW: Previous Ecommerce Next Steps Update - Info Session (22 Dec 2022)

● NEW: Ecommerce Dep & Rep Project Confluence Pages

● NEW: Racoon Gang E-commerce Pain Points

● Ecommerce deprecation announcement

● Commerce Coordinator ADRs

For more information:

19

NEW:

NEW:

NEW:

NEW:

NEW:

NEW:

[Phil]

Alright, that’s it! Lots of links here. Wanted to quickly highlight two things.

1. None of our code is a secret right now. Check out the 2u/project-theseus
branch in GitHub commerce-coordinator, links on the Confluence page to that
repo.

2. And please join us at the Ecommerce Next Steps update on April 26. We’d
love to hear your thoughts.

https://discuss.openedx.org/t/ecommerce-next-steps-update-info-session-in-april/9636
https://discuss.openedx.org/t/tcril-funded-contribution-woocommerce-discovery/9337
https://discuss.openedx.org/t/ecommerce-changes-to-stripe-payment-processor/9457/1
https://discuss.openedx.org/t/ecommerce-next-steps-update-info-session/8873
https://openedx.atlassian.net/wiki/spaces/AC/pages/3617849345/Ecommerce+Deprecation+and+Replacement+Project
https://openedx.atlassian.net/wiki/spaces/AC/pages/3623780366/E-Commerce+Pain+Points+by+RaccoonGang+experience
https://discuss.openedx.org/t/deprecation-removal-ecommerce-service-depr-22/6839
https://github.com/edx/commerce-coordinator/tree/2u/project-theseus/docs/decisions

Thank you.

20

#ecommerce Phil Shiu
Software Engineer
Purchase Squad

@pshiu • •

Glenn Martin
Principal Software Engineer

Purchase Squad
@gmartin
@grmartin

tinyurl.com/oec-2023-ecomm-lightning

[Phil]

If you have any follow up questions or thoughts, there’s the April 26 meeting, or
please come say hi or reach out on the #ecommerce channel in the Open edX
Slack.

Thank you so much!

https://openedx.slack.com/archives/C0WL6SPRA
https://tinyurl.com/oec-2023-ecomm-lightning

