Modular Domains

Where We Want the Open 4k
edX Frontend To Go .
— |

Adolfo Brandes
Principal Frontend Engineer - ‘ L
-

AN Why did we move to MFEs

So... Why DID we move to micro-frontends in the first place? For many of us in the
community, this is something that just started happening at some point, but it wasn't
exactly clear why this was being done. Let's take a walk down memory lane...

By 2019 we started hearing noises, and in the end of 2020 we finally got a taste of
them in Koa.

You all know the BOM, right? Ou affectionate nickname for edx-platform. To
understand why, think about what you have to do to make the ball of mud maintain its
shape.

Frontend 1. Server bottleneck
Problems 2. Clunky deployment

circa 2017 3. Slow development

Let's just make it clear that this was not something that affected just Open edX. For
the most part, the project implemented the best practices of the time of its inception:
in particular, those set forth by Django, the python framework chosen.

Django is great: it's a modular (remember this word!), pluggable, opinionated
framework that makes it easy to not repeat oneself while developing, while also
shepherding - if not dictating - the architecture into a reasonably organized and
performant implementation, as was the consensus at the time. If you were just
starting a project, Django would save you from reinventing the wheel until such time
as it became absolutely necessary - which would usually only happen after months
and years - at which time you'd be free to swap bits and pieces of boilerplate for
something that worked better. Django plugins abound! (Or, you could just write your
own. :shrug:)

And so, the time came when the way frontends are done needed just such an
upgrade. Why? Here's a quick recap of the frontend-related problems the platform
faced a few years after its inception:

1. HTML s rendered at run-time by the server. No matter how hard you cache,
the server will always be a bottleneck.

2. Because you can't separate one piece of the frontend from the others - it's all
one big pile - whenever you update something you have to rebuild and deploy
it all at the same time.

1. This is the main problem: as the BOM got bigger, it became harder and harder
to make changes: ever try to unwind a bundle of string? Coordinating the
work of multiple teams became a major blocker to progress. Not to mention
that properly documenting the BOM is difficult - for similar reasons

So... full rewrite then? :smirk:

Facing these problems, edx.org decided to start replatforming the frontend with
something called "micro-frontends", a term that first showed up on a tech radar in
2016 (figuratively and literally).

Tech Radar Nov.
2016

THE RADAR

TECHNIQUES

ADOPT

First time “micro 1. Consumer-driven contract testing

2. Pipelinesas code new

” i
frontends” shows up. S Swesthoteing
TRIAL
4. APIsasaproduct new
Bug bounties
Data Lake
Hosting Pl data in the EU
Lightweight Architecture Decision Records ~ new
Reactive architectures
. Serverless architecture

ASSESS
. Client-directed query new
. Container security scanning new
. Content Security Policies
. Differential privacy new
. Micro frontends new
. OWASP ASVS
. Unikernels
. VR beyond gaming

HOLD

19. Asingle Clinstance for all teams
20. Anemic REST new

21. Big Data envy

22. Cloud lift and shift

ASSESS

The ThoughtWorks technology radar is simply a twice-yearly snapshot of a company’s
perception of the technological landscape at the time. It's not an academic exercise,
but is a good reflection of the state of affairs of the industry at a particular point in
time.

Tech Radar May
2020

Firmly in Adopt
territor

Techniques

Ado
| 3

onhwN

ria

— w0~
=L 3

pt
Aprl_ylng product management to internal
platfol

rms
Infrastructure as code

Micro frontends

Pipelines as code

Pragmauc remotefalnng
Simplest possible feature toggle

|

Continuous delivery for machine learning (CD4ML)
Ethical bias testing

GraphQL for server-side resource aggregation

. Micro frontends for mobile

. Platform engineering product teams

~

. Security policy as code

. Semi-supervised Iearnm§ loops
. Transfer learning for NLI

. Use “remote native” processes and approaches
. Zero trust architecture (ZTA)

Assess
. Data mesh
. Decentralized identity
. Declarative data pipeline definition
. DeepWalk
. Managing stateful systems via container

orchestration

. Preflight builds

Hold
. Cloud lift and shift
. Legacy migration feature parity
. Log aggregation for business analytics
. Long-lived branches with Gitflow
. Snapshot testing only

Hold

Assess

2022 1. No server bottleneck W8

Frontend 2. Independent deployment W4
Wins 3. Incremental upgrades ¥

4. Autonomous teams W

So what did we get with MFEs?

1. Gone is the server request-time bottleneck for HTML. It's obviously still there
for API calls - Open edX is still a centralized application, after all - but the
frontend code is now delivered as fast as possible.

2. We can now deploy frontend code completely independently, with less
bureaucracy and pretty much zero risk outside the MFE’s scope itself.

3. Upgrading pieces of the frontend stack can now be done piece-meal, instead
of having to rewrite everything at once. (Keep this one in mind.)

4. Frontend development teams can now operate pretty much independently
from each other: instead of having to coordinate development across dozens
(or hundreds) of people, it's now isolated to a single small team, making it
much faster and efficient.

What we got!
[]

Start
learning

And in practice, this got us in the past couple of years, among other things: a
revamped learning experience, a new discussions interface (released in Olive), a new
gradebook, new authentication page... All of which would probably not have been
feasible - at least not as fast - without MFEs.

There’s always a but.

Tech Radar Oct.
2020

Micro frontend anarchy:
proceed with caution!

)
““ { o @

I /
Hold Teial Adant

slelelele

i | d MFE ANARCHY

appeared?t

They say:

“the tendency to use this architecture as an excuse to mix a range of competing
technologies, tools or frameworks in a single page, leading
to micro frontend anarchy.”

Remember: this is brought up as an industry-wide concern. Another way of saying
this is: MFEs are still cool, but not if you make a mess!

Completely independent micro-frontends

Each page is a reload

Zero interaction between MFEs
(Somewhat) shared components
and libraries

Complete development
freedom

New set of . UX inconsistencies
problems... 2

Regression in customizability
Developing is harder (in some
ways)

Incomplete replatforming

We went with the first option. And as we learned later, it has caused us some
headaches. A bit of an anarchy even, you might say.

(About those

inconsistencies..)
' Courses

Account Settings

Account Information Account Information
Profile Information These settings include basic information about your account.
Social Media Links Username
Site Preferences audit
Lifiked Ascoints The name that identifies you on localhost. You cannot change your username.
Delete My Account Fullname % Fjjt
Add name
The name that is used for ID verification and that appears on your certificates.
Email address (Sign in) f Edit

audit@example.com

Show not tell.

. Proposal: Modular Domains

Here’s what we propose to do to help things along.

A compromise

(Of course.)

Monolith

VS

Modularity

A compromise between the monolithic codebase and full MFE independence. We're
going to propose sharing more between MFEs, which will help us address many of
the problems listed earlier, at the cost of giving developers a little less independence.
We believe a minor increase in integration costs is traded for large gains in user
experience, customizability, ease of deployment, and development efficiency.

based on Domain Driven Development: the Open edX frontend will be split into formal
top-level domains, including but not limited to LMS and CMS, each of which will be
implemented as a Container SPA. The container, in turn, will render multiple
partly-independent MFEs as sub-components. The latter will be re-engineered to
conform to the hosting domain's interfaces.

Application shells

Because sharing is
caring.

Application shells

Because sharing is
caring.

Container
application

Renders this

application when
route is "/" Changes route to
/restouront/:id"
when user clicks link

Browse
micro frontend

Fetches data,
images, etc from
server

Server-side
data source

Renders this
application when
route changes to

Order

"/restaurant/:id"

micro frontend

The “Modulith”

Let's share more! Application Shell

Shared Libraries

We combine shared libraries and a shared design in such a way that more parts of
the solution are given, while other parts can still be determined by the MFE developer.

Graphic credit: Noah Sykes

https://morioh.com/p/33aa986d8d3e

Application shell characteristics

Routes between apps

Loads libraries once
(Hopefully) Ensures standards
across apps

Some cross-dependency

Reduced inconsistencies via

shared contract

HOW Wi" this . Easier development (in some
help? ways)

Opportunity to introduce
standard customization

options

Opportunity to finish

replatforming

It will be easier to develop because there’s less the developer needs to worry about.
Certain elements of the page need not even be imported, such as the header.
Theming and i18n will be much easier to integrate.

It will be harder in other ways: one would have to stick to a range of versions for
shared apps.

Foreseen domains

e LMS
e Studio

e Enterprise

The Open edX frontend will be split into formal top-level domains, including but not
limited to LMS and CMS, each of which will be implemented as an application shell.
Each container, in turn, will render multiple partly-independent MFEs as
sub-components.

Each domain shell will share React, Paragon, and Redux libraries, for instance.

Alternatives considered

single-spa: close, but no cigar

webpack module federation: addresses only
part of the problem

web components: same thing

roll our own: we didn’t reinvent Django, now

did we?

Single-spa was the one that came closest, but it leaves too much up to the architect.
At this point, we’d rather have the community support of an active project that handles
as much of the architecture as possible.

. Enter Piral

(Or, avoiding N.I.H.S.)

And this is the stack we propose to use!

What does Piral
do, exactly?

Your Piral Instance

Piral Layout Piral Plugin 1 Piral Plugin 2 Piral Plugin N

React Router React Atom React DOM

Piral Base

Piral can be thought of as a framework, while the other building blocks are just
ordinary libraries. piral-core is like the Linux kernel. A certain distribution like
Ubuntu would be piral. Additionally, to the kernel, there can be some special
programs ("drivers"), which would be the Piral plugins. An application running in user
space would then be a pilet

An opinionated solution

(Remember Django?)

Highly modular
Central dependency sharing (i.e., from the

app shell)

Bundler independent (works with Webpack)

Global state management

Independent development and deployment

But can we actually use it?

(Spoiler: yes!)

Piral is modular enough

Code, plOx?

We’re still working on the PoC.

package.json frontend-app-shell

"dependencies": {
"@edx/brand": "npm:@edx/brand-openedx@1.2.0",
"@edx/frontend-platform”": "3.6.0",
"@edx/paragon": "*20.28.5",
"piral-base": "0.15.8",
"piral-core": "0.15.8",
"react": "7"6.14.0",

frontend-app-account

"peerDependencies”: {
"@edx/brand": "npm:@edx/brand-openedx@*1.2.0",
"@edx/frontend-platform": "%2.6.0||*3.6.0",
"@edx/paragon”: ">= 10.0.0 < 21.0.0",
"react": "716.14.0",

Show not tell.

The Account Pilet frontend-app-account/src/Pilet.jsx

export const piletSpec = {
name: 'openEdx Account MFE - Pilet Version',
version: '1.0.90",
spec: 'v2',
dependencies: {},
config: {},
basePath: '/pilets',
setup(piralApi) {
piralApi.registerPage('/account', () => (
<DynamicModuleloader modules={[reduxConfig]}>
<AccountSettingsPage />
</DynamicModuleloader>
)i
piralApi.registerPage('/id-verification', () => (
<DynamicModulelLoader modules={reduxConfig}>
<IdVerificationPage />
</DynamicModuleloader>

)

Show not tell.

. The Timeline

(Seriously, this time.)

Here’s what we propose to do to help things along.

Target

A concerted effort by the community

Based on the findings of the OEP

Funded by tCRIL and other organizations

... to migrate all Tutor-supported LMS-domain
MFEs by the end of 2023

(BONUS points: finish replatforming of
LMS-domain edx-platform code)

OEP-XXXX

https://tinyurl.com/uavnjém]

