
 Modular Domains

 Where We Want the Open
edX Frontend To Go

March 30, 2023

Adolfo Brandes
Principal Frontend Engineer

Why did we move to MFEs
in the first place?

2

So… Why DID we move to micro-frontends in the first place? For many of us in the
community, this is something that just started happening at some point, but it wasn't
exactly clear why this was being done. Let's take a walk down memory lane…

By 2019 we started hearing noises, and in the end of 2020 we finally got a taste of
them in Koa.

3

You all know the BOM, right? Ou affectionate nickname for edx-platform. To
understand why, think about what you have to do to make the ball of mud maintain its
shape.

Frontend
Problems
circa 2017

1. Server bottleneck

2. Clunky deployment

3. Slow development

4

Let's just make it clear that this was not something that affected just Open edX. For
the most part, the project implemented the best practices of the time of its inception:
in particular, those set forth by Django, the python framework chosen.

Django is great: it's a modular (remember this word!), pluggable, opinionated
framework that makes it easy to not repeat oneself while developing, while also
shepherding - if not dictating - the architecture into a reasonably organized and
performant implementation, as was the consensus at the time. If you were just
starting a project, Django would save you from reinventing the wheel until such time
as it became absolutely necessary - which would usually only happen after months
and years - at which time you'd be free to swap bits and pieces of boilerplate for
something that worked better. Django plugins abound! (Or, you could just write your
own. :shrug:)

And so, the time came when the way frontends are done needed just such an
upgrade. Why? Here's a quick recap of the frontend-related problems the platform
faced a few years after its inception:

1. HTML is rendered at run-time by the server. No matter how hard you cache,
the server will always be a bottleneck.

2. Because you can't separate one piece of the frontend from the others - it's all
one big pile - whenever you update something you have to rebuild and deploy
it all at the same time.

1. This is the main problem: as the BOM got bigger, it became harder and harder
to make changes: ever try to unwind a bundle of string? Coordinating the
work of multiple teams became a major blocker to progress. Not to mention
that properly documenting the BOM is difficult - for similar reasons

So… full rewrite then? :smirk:

MFEs to the rescue!

5

Facing these problems, edx.org decided to start replatforming the frontend with
something called "micro-frontends", a term that first showed up on a tech radar in
2016 (figuratively and literally).

Tech Radar Nov.
2016

First time “micro
frontends” shows up.

6

The ThoughtWorks technology radar is simply a twice-yearly snapshot of a company’s
perception of the technological landscape at the time. It’s not an academic exercise,
but is a good reflection of the state of affairs of the industry at a particular point in
time.

Tech Radar May
2020

Firmly in Adopt
territory.

7

2022
Frontend

Wins

1. No server bottleneck ✅
2. Independent deployment ✅
3. Incremental upgrades ✅
4. Autonomous teams ✅

8

So what did we get with MFEs?

1. Gone is the server request-time bottleneck for HTML. It’s obviously still there
for API calls - Open edX is still a centralized application, after all - but the
frontend code is now delivered as fast as possible.

2. We can now deploy frontend code completely independently, with less
bureaucracy and pretty much zero risk outside the MFE’s scope itself.

3. Upgrading pieces of the frontend stack can now be done piece-meal, instead
of having to rewrite everything at once. (Keep this one in mind.)

4. Frontend development teams can now operate pretty much independently
from each other: instead of having to coordinate development across dozens
(or hundreds) of people, it’s now isolated to a single small team, making it
much faster and efficient.

What we got!

9

And in practice, this got us in the past couple of years, among other things: a
revamped learning experience, a new discussions interface (released in Olive), a new
gradebook, new authentication page… All of which would probably not have been
feasible - at least not as fast - without MFEs.

10

BUT…

There’s always a but.

Tech Radar Oct.
2020

Micro frontend anarchy:
proceed with caution!

11

MFE ANARCHY

They say:

“the tendency to use this architecture as an excuse to mix a range of competing
technologies, tools or frameworks in a single page, leading
to micro frontend anarchy.”

Remember: this is brought up as an industry-wide concern. Another way of saying
this is: MFEs are still cool, but not if you make a mess!

Completely independent micro-frontends

● Each page is a reload
● Zero interaction between MFEs
● (Somewhat) shared components

and libraries
● Complete development

freedom

12

New set of
problems…

😬

1. UX inconsistencies

2. Regression in customizability

3. Developing is harder (in some

ways)

4. Incomplete replatforming

13

We went with the first option. And as we learned later, it has caused us some
headaches. A bit of an anarchy even, you might say.

(About those
inconsistencies..)

14

Show not tell.

Proposal: Modular Domains

Here’s what we propose to do to help things along.

(Of course.)

A compromise

16

Monolith

vs

Modularity

A compromise between the monolithic codebase and full MFE independence. We’re
going to propose sharing more between MFEs, which will help us address many of
the problems listed earlier, at the cost of giving developers a little less independence.
We believe a minor increase in integration costs is traded for large gains in user
experience, customizability, ease of deployment, and development efficiency.

based on Domain Driven Development: the Open edX frontend will be split into formal
top-level domains, including but not limited to LMS and CMS, each of which will be
implemented as a Container SPA. The container, in turn, will render multiple
partly-independent MFEs as sub-components. The latter will be re-engineered to
conform to the hosting domain's interfaces.

Application shells

Because sharing is
caring.

17

Application shells

Because sharing is
caring.

18

The “Modulith”

Let’s share more!

19

Layout

"Modulith"Framework

Application Shell

NO YES

Sh
ar

ed
 L

ib
ra

rie
s

N
O

YE
S

We combine shared libraries and a shared design in such a way that more parts of
the solution are given, while other parts can still be determined by the MFE developer.

Graphic credit: Noah Sykes

https://morioh.com/p/33aa986d8d3e

Application shell characteristics

● Routes between apps
● Loads libraries once
● (Hopefully) Ensures standards

across apps
● Some cross-dependency

20

How will this
help?

1. Reduced inconsistencies via

shared contract

2. Easier development (in some

ways)

3. Opportunity to introduce

standard customization

options

4. Opportunity to finish

replatforming

21

It will be easier to develop because there’s less the developer needs to worry about.
Certain elements of the page need not even be imported, such as the header.
Theming and i18n will be much easier to integrate.

It will be harder in other ways: one would have to stick to a range of versions for
shared apps.

Foreseen domains

22

● LMS

● Studio

● Enterprise

The Open edX frontend will be split into formal top-level domains, including but not
limited to LMS and CMS, each of which will be implemented as an application shell.
Each container, in turn, will render multiple partly-independent MFEs as
sub-components.

Each domain shell will share React, Paragon, and Redux libraries, for instance.

Alternatives considered

23

● single-spa: close, but no cigar

● webpack module federation: addresses only

part of the problem

● web components: same thing

● roll our own: we didn’t reinvent Django, now

did we?

Single-spa was the one that came closest, but it leaves too much up to the architect.
At this point, we’d rather have the community support of an active project that handles
as much of the architecture as possible.

Enter Piral

(Or, avoiding N.I.H.S.)

And this is the stack we propose to use!

What does Piral
do, exactly?

25

Piral can be thought of as a framework, while the other building blocks are just
ordinary libraries. piral-core is like the Linux kernel. A certain distribution like
Ubuntu would be piral. Additionally, to the kernel, there can be some special
programs ("drivers"), which would be the Piral plugins. An application running in user
space would then be a pilet

(Remember Django?)

An opinionated solution

26

● Highly modular

● Central dependency sharing (i.e., from the

app shell)

● Bundler independent (works with Webpack)

● Global state management

● Independent development and deployment

(Spoiler: yes!)

But can we actually use it?

27

Piral is modular enough

28

Code, pl0x?

We’re still working on the PoC.

package.json

29

"dependencies": {
 "@edx/brand": "npm:@edx/brand-openedx@1.2.0",
 "@edx/frontend-platform": "3.6.0",
 "@edx/paragon": "^20.28.5",
 "piral-base": "0.15.8",
 "piral-core": "0.15.8",
 "react": "^16.14.0",
}

frontend-app-shell

"peerDependencies": {
 "@edx/brand": "npm:@edx/brand-openedx@^1.2.0",
 "@edx/frontend-platform": "^2.6.0||^3.6.0",
 "@edx/paragon": ">= 10.0.0 < 21.0.0",
 "react": "^16.14.0",
}

frontend-app-account

Show not tell.

The Account Pilet

30

export const piletSpec = {
 name: 'openEdx Account MFE - Pilet Version',
 version: '1.0.0',
 spec: 'v2',
 dependencies: {},
 config: {},
 basePath: '/pilets',
 setup(piralApi) {

piralApi.registerPage('/account', () => (
 <DynamicModuleLoader modules={[reduxConfig]}>
 <AccountSettingsPage />
 </DynamicModuleLoader>

));
piralApi.registerPage('/id-verification', () => (

 <DynamicModuleLoader modules={reduxConfig}>
 <IdVerificationPage />
 </DynamicModuleLoader>

));
 },
};

frontend-app-account/src/Pilet.jsx

Show not tell.

The Timeline

(Seriously, this time.)

Here’s what we propose to do to help things along.

● A concerted effort by the community
● Based on the findings of the OEP
● Funded by tCRIL and other organizations
● … to migrate all Tutor-supported LMS-domain

MFEs by the end of 2023
● (BONUS points: finish replatforming of

LMS-domain edx-platform code)

Target

32

OEP-XXXX

33

https://tinyurl.com/uavnj6mj

34

Questions?

