
Porting a Django
View to an MFE
An .Open edX. lightning talk by .Nathan Sprenkle.

Micro-fro
ntend application

Why MFEs?
Deconstructing the Monolith

+ Standalone React / Redux applications

+ Outside of edx-platform
+ Client heavy instead of server heavy

+ Paragon: component reuse, branding, and accessibility

?

Talk Inspiration:
Create a new
Student Dashboard

Page is high visibility, high
complexity.

Requires near feature parity.

~ 1K lines of code just for
gathering & composing page
context.

- User info and account status
- Enrollments & entitlements
- Programs information
- Credit statuses
- And more…

~ 1K lines of code for gathering &
composing page context.

Challenging to reimplement from scratch and meet

requirements.

But we found a useful pattern…

Problem!

… from investigating these 2 architectures . !

Mirror as much of the core logic and
structure as possible…

… while allowing for clearly scoped
refactors & following best-practices.

xLet’s see how by digging into those architectures…

Django View (Python function)

Business logic & data gathering

Page Template

HTML / JS / CSS

Presentation logic
+

Variable placeholders

Selects

Page Context

Variables & data

Rendered Page

Static HTML

Django views! What are?

User
Requests

Gathers

Receives

Client Server

MFE (React / Redux)

Presentation logic & variable placeholders

Requests

Response Data

Variables & data

But what about Micro-frontend Applications (MFEs)?!?!

User

Returns

Backend API (BFF)

Gathers data
+

Business logic

Structures data

Client

Server

Visits

NO server rendering step!

Hopefully you’re thinking…

“Wow, these have some clear
similarities!”

Tto map logic to our new implementation

1. BFF : Django View

2. MFE : Template / Rendered Page

3. Page context : Response Data

Yes!

And we can use those
similarities… Django View

MFE

Response Data

User Backend APIMFE

Django View

TemplatePage

User

Page Context

Our Process, in 4 steps:

…

Step 1: Duplicate backend logic, clearly delineate logical boundaries

Page Template

Presentation
Logic

+
Business Logic

MFE Design

Presentation Logic

API Design

Business Logic

Very sus Clean separation

Serializers

Django View

Business
Logic

+
Presentation

Logic

Page ContextPage Context

Step 2: Define frontend contracts, start building MFE

MFE Design

Presentation logic
+

Variable
placeholders

API Design

Python function

Gathers data
+

Business logic

Contract Design

Easiest frontend
data shape to

develop for
Defines

Will have
to supply

Backend-informed frontend-driven development

Backend API

≈

Old View Code

Step 3 : Translate data from backend to frontend

Serializers

Translate from
page context to
contract shape

To match

Contract

Easiest frontend
data shape to

develop for

Page Context

Produces Transformed
by

Step 4: Wrap calls to legacy APIs, selectively profile and refactor

BFF

Business
logic

Legacy Function

BFF

Python function

Gathers data
+

Business logic

Leveraging legacy APIs directly Wrapped implementation

Legacy Function

Legacy Function

New signature

Legacy
Function

Legacy
Function

New signature

Legacy
Function

1. Duplicate backend logic, clearly delineate logical boundaries
2. Define frontend contracts, start building MFE

3. Translate data from backend to frontend

4. Wrap calls to legacy functions, profile and selectively refactor

Pattern TL;DR

End Result:

Clean, new MFE frontend.

Retains much existing logic & nuance.

Allows for refactorability.

Quick development process.

PLACE
HOLD
ER

Hope this is useful!

Questions? Want to nerd out?

openedx @nsprenkle
 2U 📧 nsprenkle@2u.com

Look for this guy!

Thank You

