
UNLOCKING LTI
How We Decoupled the 
LTI 1.3 Launch from the

Open edX Platform
Michael Roytman

edX/2U Software Engineer

1

Welcome to “Unlocking LTI”. Today, we’ll be talking about decoupled LTI 1.3 launches. 
We’ll cover what that even means, why it’s important, and how you can leverage LTI 
from your application.

I feel that LTI has garnered quite a bit more attention in the last year or so, at least at 
2U, so the objective of this talk is to make you more familiar with the state of our LTI 
implementation and what the vision is for our use of LTI on the platform.

Now, if you went to David Joy’s talk on “An Opinionated Vision for Open edX 
Extensibility and Customization”, you may recall that he described the LTI 
specifications as being “not fit for human consumption.” And, for that reason, I’m not 
going to spend any time reviewing our LTI implementation code today. Instead, I’ve 
structured today’s talk using diagrams as an exploration of how LTI was implemented 
on the platform, the issues we encountered using it, and how we addressed those 
issues in a way that we believe greatly benefits the platform.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

2

Here is an overview of the structure of today’s talk. You’ve probably come to today’s 
talk with a series of questions based on the title of the talk alone, and you may see 
some of them on the screen. I’m planning on answering these questions in the next 
35 minutes or so. Of course, I’ll leave 10 or so minutes at the end for any remaining 
questions you may have.



1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

AGENDA

3

So, let’s start with the question “What is LTI?” I know many of you may be familiar with 
LTI already, but some of you may not be. It’s important that you understand how LTI 
works generally so that you can better understand and appreciate the problem space, 
our LTI implementation architecture, and our solution design.



━ LTI stands for Learning Tools 
Interoperability.

━ LTI allows platforms to integrate 
with tools.

━ LTI is authored by 1EdTech.

━ LTI 1.3 is the only currently 
supported version.

━ LTI 1.1 is no longer supported.

━ Today, we’ll be discussing LTI 1.3.

LTI REVIEW

4

Let’s start by reviewing what LTI is. 



━ LTI stands for Learning Tools 
Interoperability.

━ LTI allows platforms to integrate 
with tools.

━ LTI is authored by 1EdTech.

━ LTI 1.3 is the only currently 
supported version.

━ LTI 1.1 is no longer supported.

━ Today, we’ll be discussing LTI 1.3.

LTI REVIEW

5

LTI is an acronym that stands for “Learning Tools Interoperability”. Unlike a lot of 
technological names, it does actually tell you quite a bit about what it’s all about.



━ LTI stands for Learning Tools 
Interoperability.

━ LTI describes how learning 
platforms can integrate with 
learning tools.

━ LTI is authored by 1EdTech.

━ LTI 1.3 is the only currently 
supported version.

━ LTI 1.1 is no longer supported.

━ Today, we’ll be discussing LTI 1.3.

LTI REVIEW

6

Generally speaking, LTI is a standard that describes how learning platforms - in our 
case, that’s the edX platform - can seamlessly integrate with learning tools. This 
seamless integration is done through a browser based launch from a platform to a 
tool.

Just to give you a real world example of an LTI launch, imagine a learner going to a 
Coding 101 course in the platform. They visit the course content and are launched to 
a Jupyter Notebook coding exercise directly from within the courseware.



━ LTI stands for Learning Tools 
Interoperability.

━ LTI describes how learning 
platforms can integrate with 
learning tools.

━ LTI can greatly enrich a learning 
platform’s offerings.

━ LTI is authored by 1EdTech.

━ LTI 1.1 is no longer supported.

━ Today, we’ll be discussing LTI 1.3.

LTI REVIEW

7

And that’s what’s so powerful about it. An LTI launch is a way to deeply enrich a 
platform’s content offerings and capabilities without the need for bespoke integrations 
of custom features built in-house.



━ LTI stands for Learning Tools 
Interoperability.

━ LTI describes how learning 
platforms can integrate with 
learning tools.

━ LTI can greatly enrich a learning 
platform’s offerings.

━ LTI is authored by 1EdTech.

━ LTI 1.3 is the only currently 
supported version.

━ LTI 1.1 is no longer supported.

━ Today, we’ll be discussing LTI 1.3.

LTI REVIEW

8

LTI is authored by an organization called 1EdTech. 1EdTech has authored a number 
of versions of the LTI standard, including LTI 1.1 and LTI 1.3.



━ LTI stands for Learning Tools 
Interoperability.

━ LTI describes how learning 
platforms can integrate with 
learning tools.

━ LTI can greatly enrich a learning 
platform’s offerings.

━ LTI is authored by 1EdTech.

━ Today, we’ll be discussing the 
basic LTI 1.3 launch.

LTI REVIEW

9

Today, we’ll be talking about LTI 1.3 specifically, because it’s the only currently 
supported version of LTI by 1EdTech. We also will not be talking about LTI Advantage 
Services today.

Now that we understand what LTI is and why it’s useful, let’s take a brief look at how it 
actually works.



LTI LAUNCH:
INTEGRATION

10

Before an LTI launch ever occurs in the browser, an LTI integration must be 
established.



LTI LAUNCH:
INTEGRATION
━ LTI integrations are 

created between 
platforms and tools.

11

The LTI integration is created between a LTI platform and an LTI tool.



LTI LAUNCH:
INTEGRATION
━ LTI integrations are 

created by 
exchanging 
configuration data 
between platforms 
and tools.

12

In order for an LTI integration to be established, LTI configuration data must be 
exchanged between the platform and the tool. The set of configuration data is 
described by the standard, but it includes data like a client ID for the tool, a public key 
for the tool, various URLs for the LTI launch endpoints, etc.

How this data is exchanged between the platform and tool are outside the scope of 
the standard.



LTI LAUNCH:
INTEGRATION
━ On edX, the 

configuration step is 
done by a course 
author.

13

But, on the edX platform, this configuration exchange is done by the course author.



LTI LAUNCH:
INTEGRATION
━ The course author 

manually 
exchanges 
configuration data 
between the 
platform and the 
tool.

14

The course author creates the LTI integration in the platform and in the tool. They 
manually exchange the LTI configuration data by entering the values in the platform 
and in the tool. The edX platform stores this configuration data. On the edX platform, 
the course author does this through Studio by authoring LTI components.

This is an important step in the LTI integration process that must occur before an LTI 
launch every occurs.



LTI LAUNCH:
BROWSER
LAUNCH

15

Now, we’re ready to do an LTI browser based launch. We’re going to do an abridged 
look at the LTI launch. We’re going to touch on the elements of an LTI launch that are 
key to understanding why our LTI implementation was coupled to the edX platform.



LTI LAUNCH:
BROWSER 
LAUNCH
━ The browser, 

platform, and tool 
are key players in an 
LTI 1.3 launch.

16

Here we have the key players of an LTI launch. Naturally, we have the browser, 
because this is a browser based launch. And we have the learning platform and the 
learning tool, which are integrated together through the LTI configuration.



LTI LAUNCH:
BROWSER
LAUNCH

LTI LAUNCH:
BROWSER 
LAUNCH
━ A learners clicks an 

LTI launch link to 
start the LTI launch.

17

Of course, no browser based flow is going to make much sense without a user. Here, 
we have an edX learner who’d like to launch into Jupyter Notebook through the 
platform in their Coding 101 course.

First, the learner visits the edX platform. The edX platform renders an LTI launch link. 
When the learner clicks this link, the LTI launch flow will begin in the browser.



LTI LAUNCH:
BROWSER
LAUNCH

LTI LAUNCH:
BROWSER 
LAUNCH
━ The LTI launch 

begins when the 
learner clicks the LTI 
launch link.

18

The learner clicks the LTI launch link, and the LTI launch flow begins.



LTI LAUNCH:
BROWSER 
LAUNCH
━ This is the Third 

Party Initiated Login 
Request.

━ It informs the tool 
that an LTI launch 
has begun and 
prompts it to make 
the Authentication 
Request. 

19

The platform generates a request to the tool via the browser called the Third Party 
Initiated Login request. This is the platform’s way of alerting the tool that an LTI launch 
is going to begin soon. It also prompts the tool to make the subsequent request.



LTI LAUNCH:
BROWSER 
LAUNCH
━ This is the 

Authentication 
Request.

━ The tool is 
requesting the the 
platform 
authenticate the 
learner.

20

The subsequent request is made by the tool to the platform. The purpose of this 
request is to ask the platform to authenticate the learner.

For this reason, this request is called the authentication request.

In order for the learner to be able to access tools seamlessly, tools rely on the 
authorization server, which is the platform in this example, to authenticate the learner. 
This avoids the needs for learners to maintain separate sets of credentials for each 
LTI tool. By virtue of being authenticated with the platform, the learner gets an 
SSO-like experience with tools.



LTI LAUNCH:
BROWSER 
LAUNCH
━ This is the 

Authentication 
Response.

━ This is the actual LTI 
launch and contains 
the launch 
message.

━ The message has 
contextual data. 

21

Naturally, the platform sends a response to this authentication request to the tool.

This is called the authentication response. It’s also the actual LTI launch. In this 
request, the platform sends a JSON Web Token, or JWT, that contains the learner’s 
identity information as well as other contextual information about the launch. 
Contextual information include the user’s email address, the role of the user on the 
platform, the context in which the launch is occurring, and so on. This JWT is called 
the ID token.



LTI LAUNCH:
BROWSER 
LAUNCH
━ This is the Content 

Response.

━ The tool is launched 
to from the 
platform.

22

And lastly, once the tool receives the LTI launch message, it’s ready to return its 
contents to the platform. It does so by issuing a redirect to its content. The browser 
does the redirect, and the tool is displayed within the course content. This is called the 
content response.

There are a lot of boxes and arrows here, and it’s not so important that you 
understand every request and response. There are a few key points we need to take 
away from understanding how the LTI launch works.



LTI LAUNCH:
KEY POINTS

23

What are the key points?



LTI LAUNCH:
KEY POINTS

1. CONFIGURATION DATA must be 
exchanged between platform and 
tool out-of-band before a launch.

2. The LTI launch occurs in the 
BROWSER via two 
REQUEST-RESPONSE cycles or 
LEGS of the LTI flow.

3. The platform must send CONTEXTUAL 
DATA to the tool in the LTI launch.

24

First, we need to understand that an LTI integration must be established before an LTI 
launch ever occurs in the browser. Configuration data must be exchanged between 
the platform and the tool during this step.



LTI LAUNCH:
KEY POINTS

1. CONFIGURATION DATA must be 
exchanged between platform and 
tool out-of-band before a launch.

2. The LTI launch occurs in the 
BROWSER via two 
REQUEST-RESPONSE cycles or 
LEGS of the LTI flow.

3. The platform must send 
CONTEXTUAL DATA to the tool in 
the LTI launch.

25

Next, it’s important to understand that the LTI launch occurs via the browser. The 
platform makes a series of requests to the tool and vice-versa.



LTI LAUNCH:
KEY POINTS

1. CONFIGURATION DATA must be 
exchanged between platform and 
tool out-of-band before a launch.

2. The LTI launch occurs in the 
BROWSER via two 
REQUEST-RESPONSE cycles or 
LEGS of the LTI flow.

3. The platform must send 
CONTEXTUAL DATA to the tool in 
the LTI launch.

26

Lastly, in the actual LTI launch, the platform must send important data about the LTI 
launch and the context in which it’s occurring. This is what we decided to call 
contextual data. This is the information contained in the ID token that’s sent in the LTI 
launch.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

27

Now, we’ve reviewed what LTI is, why it’s important, and how it works. But if LTI is 
such a powerful extensibility mechanism, then what is the problem? 



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

28

In order to understand the problem with our LTI implementation, we need to use our 
imagination and pretend it’s March 30th, 2022. You’re on the Cosmonauts team at 2U, 
and you want to improve your team’s implementation of proctoring. Currently, your 
proctoring integrations are custom and bespoke, and it’s hard to add new ones, let 
alone support the old ones. You want to use LTI to launch to proctoring vendors in the 
courseware instead. But you quickly run into a problem. Let’s take a look at what that 
is.



LTI ON EDX

29

In order to understand the conflict between LTI and proctoring, we need to take a look 
at how LTI is supported on the edX platform. Let’s take a look at a sample 
representation of a course on edX platform as a tree to better understand this.



LTI ON EDX

30

At the root of the course tree, we have the course block.



LTI ON EDX

31

The course block has section blocks as children.



LTI ON EDX

32

Section blocks have subsection blocks as children.



LTI ON EDX

33

Subsection blocks have unit blocks as children.



LTI ON EDX

34

And, finally, unit blocks have component blocks as children. Why is this important?



LTI ON EDX
━ LTI launches occur 

at the component 
level.

35

Well, it turned out that LTI launches could only be done at the component level. This 
is because LTI is implemented as an XBlock. An LTI launch can only be done at the 
component level in the courseware.



LTI ON EDX
━ LTI launches occur 

at the component 
level.

━ Proctoring occurs at 
the subsection level.

36

Unlike LTI, proctoring is set at the subsection level. It’s a property of a subsection.



LTI ON EDX
━ LTI launches occur 

at the component 
level.

━ Proctoring occurs at 
the subsection level.

━ LTI launches cannot 
occur at the 
subsection level.

37

This means that all descendants of the proctored subsection are a part of the 
proctored exam.

Unfortunately, this meant we couldn’t use LTI for proctoring, because the proctoring 
experience occurs at the subsection level, and our implementation of LTI was only 
possible at the component level.

This brings us to our overall problem statement, which applies to more than just 
proctoring.



PROBLEM 
STATEMENT The implementation 

of LTI in the XBlock 
made it impossible 
to do an LTI 1.3 
launch from outside 
the courseware.

38

This is our overall problem statement, and this problem is the one we endeavoured to 
solve. We wanted to make it possible to do a basic LTI 1.3 launch from any Django 
application and from outside the courseware.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

39

Now that we’ve understood the problem we were facing,



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

40

let’s talk about what we did about it.

I’m going to walk us through an overview of the architecture of our LTI implementation 
describe what our strategy was at a high level before diving into more of the details.



HIGH-LEVEL 
STRUCTURE

41

Let’s start by talking about the structure of our LTI implementation and its relationship 
to the edX platform.



HIGH-LEVEL 
STRUCTURE
━ This is the edX 

platform.

42

Here is the edx-platform.



HIGH-LEVEL
STRUCTURE
━ The LTI library is 

installed into the 
edX platform.

43

And this is the xblock-lti-consumer library.

The xblock-lti-consumer is a library that contains our LTI implementation. The library 
is installed into the edX platform.



HIGH-LEVEL
STRUCTURE
━ The LTI library 

contains the LTI 
XBlock and all the 
supporting LTI code.

44

The xblock-lti-consumer library contains an XBlock, called LtiConsumerXBlock, and 
all of the supporting code that makes LTI possible. This XBlock is installed into the 
platform and made available as any other XBlock is.

You might imagine that it would be possible to, say, just install the LTI library 
anywhere it could be useful, leveraging that supporting code in other contexts beyond 
the XBlock runtime. Unfortunately, we found that that wasn’t possible.



HIGH-LEVEL
STRUCTURE
━ There weren’t clear 

boundaries 
between the LTI 
XBlock and the 
supporting LTI code.

45

This is a more accurate representation of the library and of the relationship between 
the LtiConsumerXBlock and the LTI library components.

The LTI XBlock and the LTI library had grown together, and it became difficult to see 
clear boundaries.

This made it impossible to do an LTI 1.3 launch outside the XBlock runtime. In order 
to enable our proctoring changes, we sought to break them up. 



HIGH-LEVEL
STRUCTURE
━ Our goal was for the 

LTI XBlock to 
depend on the LTI 
library.

━ This way, the LTI 
library could be 
installed elsewhere.

46

This was our aspirational design. We wanted an independent core LTI library that 
various contexts could install and make use of.

In this design, the XBlock now depends on the LTI library, but the LTI library does not 
depend on the XBlock. This frees the library up to be separated into a separate 
repository and installed as needed by other contexts.

Of course, this is aspirational. And we didn’t completely get to this point. But we did 
get close enough to enable basic LTI 1.3 launches from anywhere.

I also want to take a moment to mention that a lot of this work built on OpenCraft’s 
heavy investment in the repository long before we become involved. They did a lot of 
work on LTI, and the work I’m presenting to you today would not be possible without 
their involvement and expertise. I want to be sure to give credit where it’s due.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

47

That’s a look at our overall vision and approach for the LTI library, but before we move 
on to a closer look at the details,



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

48

I want to take a moment to reflect on the impact of these changes. Of course, you can 
appreciate the impact this has on LTI proctoring project, but it’s important to 
understand how these change impact the entire platform beyond just proctoring. Here 
are a few ways that a decoupled LTI greatly enhances our platform capabilities.



IMPACT:
LTI REUSE

49

First, there’s LTI reuse.



IMPACT:
LTI REUSE
━ Each LTI component 

is associated with a 
single LTI 
integration.

50

Here is another look at our course tree structure from before.

Notice that each LTI component has a one-to-one relationship with an LTI integration. 
Because LTI is implemented as an XBlock, the LTI configuration information is stored 
in the modulestore. This means that each XBlock has its own LTI configuration.

The problem with this is that course authors will often want to place the same LTI tool 
multiple times in a course. Theoretically, the LTI integrations could be identical, but 
because of our LTI implementation, course authors would have to painstakingly create 
LTI integrations in Studio and in the tool for each placement of the tool.

That has been our biggest point of feedback as more course teams are willing to 
experiment with LTI 1.3 It’s a major impediment to LTI 1.3 adoption on the platform.



IMPACT:
LTI REUSE
━ LTI components can 

share a single LTI 
integration.

51

If LTI is decoupled from the XBlock, and LTI configuration data no longer has to be 
stored in the modulestore, LTI integrations can be shared amongst many LTI 
components.

This makes authoring LTI 1.3 components a lot simpler. In fact, we are currently 
working on early plans to investigate LTI configuration reuse between XBlocks that 
become possible as a result of this work.

Of course, this improvement is largely a consequence of a change to our 
implementation of LTI. It’s not a benefit that we get as a result of using LTI in more 
places. Let’s take a look at some course authoring improvements we can get as a 
result of doing LTI launches from more contexts.



IMPACT:
STUDIO
━ A decoupled LTI 

enables LTI 
integrations from 
other parts of the 
platform, like Studio.

52

Here is the course outline in Studio. Course authors design their courses here. 
Designing a course with accessibility in mind is an important part of having equitable 
and impactful content. Imagine if we did an LTI launch to a content scanning tool that 
would scan course content for accessibility best practices. This would enable course 
teams to design more accessible course content.



IMPACT:
LMS
━ A decoupled LTI 

enables LTI 
integrations from 
other parts of the 
platform, like the 
LMS.

53

On the learning side, LTI can come in handy too. This is the discussion forums. 
There’s a lively discussion going on. We could integrate with an LTI tool to implement 
talk-to-text on the page or to read the discussion forum aloud to a learner. This makes 
participating in a course easier.



IMPACT:
DJANGOAPP

54

Let’s end with what I think is the biggest impact, and that’s that LTI launches can be 
done from any Djangoapp. Let’s take a look at a simple Djangoapp to see how this 
could work.



IMPACT:
DJANGOAPP
━ A decoupled LTI 

enables LTI 
launches from a 
Djangoapp.

55

This is a very basic look at how LTI could be done from a Djangoapp. This is the 
model we’re using for our proctoring project.

We’ve got the microfrontendend serving up content in the browser, and we’ve got the 
backend Django service powering it. 

The xblock-lti-consumer library is installed into the Django service, and it’s providing 
the implementation of LTI. In particular, it can generate the LTI launch link and handle 
all the backend request handling for the two legs of the LTI launch flow.

When the learner interacts with the MFE in the browser, it calls to the backend Django 
service, which generates and returns an LTI launch link to the MFE. The launch link is 
rendered in the browser. When the learner clicks it, the LTI launch starts, and two legs 
of the LTI launch flow are handled by the LTI library in the Django service.

These are some simple examples of how LTI could be used outside of the XBlock 
runtime to enhance the platform. Although we may never implement the LTI tool ideas 
in Studio and the LMS, I’m still really excited about this work. And that’s because the 
fact that they’re possibilities now is a big change. We’re no longer limited by our 
implementation of LTI. We have the entire marketplace of LTI tools at our disposal.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

56

This gives us an appreciation for the importance of this work and why it goes beyond 
just proctoring.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

57

Let’s dive into how we actually did the decoupling. We’re going to look at the same 
problem and the same approach but under a microscope.



LTI DESIGN
━ The LTI library is 

installed into the 
edX platform.

58

Again, this is the edX platform. The xblock-lti-consumer library is installed into it.

Let’s take a look at the key components of the edX platform and the 
xblock-lti-consumer with respect to LTI and understand the relationships amongst 
them.



LTI DESIGN
━ LTI XBlock has 

handlers.

━ Handlers 
implement LTI 
launch flow.

━ LTI XBlock runs in 
XBlock runtime 
with modulestore 
and XBlock 
services.

59

In the xblock-lti-consumer library, we have an LTI XBlock that implements LTI.

The XBlock has Python methods that implement the server side of the XBlock. They 
are are called “handlers”, and they “handle” AJAX calls made by the learner’s 
browser. As you’ll recall, LTI is a browser based launch, so these handlers implement 
the requests made to the platform and return responses. In our case, the handlers 
implement the request handling for the requests the tool directs to the platform.

Unsurprisingly, there’s the modulestore. The modulestore is where course content is 
stored, including LTI components. We also have XBlock services that the XBlock 
relies on.



LTI DESIGN
━ LTI XBlock relies on 

modulestore and 
XBlock services.

60

The LTI XBlock has a dependency on the modulestore and on XBlock services. It 
uses the XBlock services to collect contextual data. For example, it may need a user’s 
email address to include in an LTI launch, which it will get from the XBlock user 
service.



LTI DESIGN
━ Django plugin 

supplies views to 
installing 
Djangoapp.

━ Django plugin 
views implement 
LTI launch flow.

61

Then, we have a Django plugin. The Django plugin has a few views that implement 
the request handling for the requests the tool directs to the platform. We’ll talk about 
the relationship between the LTI XBlock handlers and the Django plugin views in a 
moment.



LTI DESIGN
━ Django model 

stores small 
amount of LTI 
configuration data.

62

We also have a LtiConfiguration Django model. This Django model stores a small 
amount of LTI configuration data. Although the LTI XBlock stores the majority of LTI 
related configuration, the LtiConfiguration model stores configuration data that is 
auto-generated by the platform. For example, a client ID for the tool and the platform’s 
public-private key pair is auto-generated by the platform and stored in this model.

Of course, this now means that the LTI configuration data for a particular LTI 
integration is now split between the LtiConfiguration model and the LTI XBlock.



LTI DESIGN
━ Django model has 

a block property.

63

That’s where the block property of the LtiConfiguration model comes in.



LTI DESIGN
━ Block property of 

Django model ties 
XBlock and Django 
model together.

64

In order to connect the two sources of LtiConfiguration, the block property holds a 
reference to a block descriptor that has been loaded out of the modulestore. This 
allows the LtiConfiguration model to have access to the full set of LTI configuration 
data.

Now, these are the main dependencies and relationships between these components. 
Our approach to decoupling the LTI implementation from the XBlock was to continue 
this exercise of enumerating the relationships between the XBlock and everything 
else LTI related. Using this process, we identified three key coupling points. We 
believed that if we addressed each of these three coupling points, we could decouple 
the LTI implementation from the XBlock. Let’s take at each one and discuss how we 
went about addressing them.

There are going be small changes to the diagram as we’re reviewing these coupling 
points. I’ve included a green star icon on the diagram to indicate what part of the 
diagram we’re talking about and what part of the diagram has changed. If you find 
yourself getting lost in the diagram, just refer to the green star.



LTI DESIGN
━ The Django plugin 

and model are the 
part of the LTI 
library that can be 
used outside the 
XBlock runtime.

65

I want to take a moment to point out that the Django plugin and Django LTI 
configuration model are a part of the “LTI library” - the parts of the 
xblock-lti-consumer library that are intended to be usable outside the XBlock 
runtime. As we walk through the diagram, keep in mind that we want to see the 
LTI XBlock depend on this library but not vice-versa.



KEY COUPLING 
POINTS:
REQUEST
HANDLING
━ Django plugin 

views call XBlock 
handlers.

66

Our first dependency is between the Django plugin views and the XBlock handlers. I 
promised you I’d explain what was going on with the XBlock handlers and the Django 
plugin views. Well, this plugin was created as a first step toward a decoupled 
implementation. Like the XBlock handlers, its intention was to contain the views 
necessary to implement an LTI launch. The plugin was intended to eventually be 
independent of the XBlock. However, at this point, it was still dependent on the 
XBlock.

The view for the basic LTI launch simply served as a pass through for the XBlock 
handler by calling it.

However, the Django view also had a few views that were implemented entirely in the 
Django plugin. These were mainly views implementing the LTI Advantage Services. 
Although these views were implemented entirely in the Django plugin, they still 
needed access to LTI configuration data and LTI contextual data.

This brings us to our next coupling point.



KEY COUPLING 
POINTS:
CONFIGURATION 
DATA
━ Django plugin 

views access 
XBlock reference 
using block 
property.

67

The next coupling point is between the Django plugin views and the block property of 
the LtiConfiguration model. As I said, the Django plugin needed access to LTI 
configuration data to implement the LTI launch. The majority of this configuration data 
was stored in the modulestore, so the Django plugin view access the block property of 
the model and read the configuration data directly off the XBlock.

This meant that the Django plugin views could not run outside the context of the edX 
platform.

I also mentioned that the Django plugin views needed access to contextual data. As a 
reminder, this is data that is sent in the LTI launch - data like the learner’s user 
identifier, the learner’s username and email, the learner’s role in the course, the name 
of the course, and so on. How did the Django plugin views get access to this 
contextual data?



KEY COUPLING 
POINTS:
CONTEXTUAL 
DATA
━ Django plugin uses 

platform Python 
APIs.

68

Well, they actually called into various Python APIs on the platform.



KEY COUPLING 
POINTS:
CONTEXTUAL
DATA
━ Django plugin 

views use a 
compatibility 
module.

69

The Django plugin contained a compatibility module, and the views imported and 
called functions from this module.



KEY COUPLING 
POINTS:
CONTEXTUAL
DATA
━ Compatibility 

module imports 
Python APIs from 
the platform.

70

The functions of the compatibility module imported various Python API functions from 
the edX platform and encapsulated them in wrapped functions. For example, the 
Django plugin views that simply called the corresponding XBlock handlers did so by 
importing the run_xblock_handler function from the courseware app of the LMS via 
the compatibility module.

Of course, this meant that these compatibility functions would not return meaningful 
contextual information unless the Django plugin views were running inside the 
platform.



KEY COUPLING 
POINTS:
ALL

71

Here is a look at all three couplings points. As we can see, the direction of the 
dependencies is from the components of the LTI library to various parts of the edX 
platform - the XBlock, the XBlock handlers, and the platform APIs.



KEY COUPLING 
POINTS:
ALL

72



1. The views implement 
REQUEST HANDLING by 
calling XBlock handlers.

2. The plugin views read 
CONFIGURATION DATA 
from the XBlock.

3. The views read 
CONTEXTUAL DATA 
from the platform.

KEY COUPLING 
POINTS:
REVIEW

73

Let’s review the key coupling points.



1. The plugin views implement 
REQUEST HANDLING by calling 
XBlock handlers.

2. The plugin views read 
CONFIGURATION DATA from the 
XBlock.

3. The views read CONTEXTUAL DATA 
from the platform.

KEY COUPLING 
POINTS:
REVIEW

74



1. The plugin views implement 
REQUEST HANDLING by calling 
XBlock handlers.

2. The plugin views read 
CONFIGURATION DATA from the 
XBlock.

3. The views read CONTEXTUAL DATA 
from the platform.

KEY COUPLING 
POINTS:
REVIEW

75



KEY COUPLING 
POINTS:
REVIEW

1. The plugin views implement 
REQUEST HANDLING by calling 
XBlock handlers.

2. The plugin views read 
CONFIGURATION DATA from the 
XBlock.

3. The plugin views read CONTEXTUAL 
DATA from the platform.

76



KEY COUPLING 
POINTS

1. The plugin views implement 
REQUEST HANDLING by calling 
XBlock handlers.

2. The plugin views read 
CONFIGURATION DATA from the 
XBlock.

3. The plugin views read CONTEXTUAL 
DATA from the platform.

77



KEY COUPLING 
POINTS:
REQUEST
HANDLING
━ Django plugin 

views call XBlock 
handlers.

78

Our first dependency is the one between the Django plugin views that the XBlock 
handlers. In order for these Django plugin views to be useful outside of the XBlock 
runtime, they’d have to stop calling the XBlock handlers. So, what did we do?

Fortunately, we didn’t have to do anything. OpenCraft was working in this repository 
as we were getting spun up with our LTI for proctoring project. They also had a need 
for a decoupled LTI, so they were already in the process of addressing this issue. 
Members of OpenCraft like Giovanni Cimolin da Silva and Arunmozhi Periasamy went 
through the process of refactoring these Django plugin views. What OpenCraft did 
was rewrite the XBlock handlers as Django plugin views.



KEY COUPLING 
POINTS:
REQUEST
HANDLING
━ XBlock handlers 

call Django plugin 
views or simply rely 
on plugin 
installation.

79

Now, the dependency looked like this. This is great. We’ve got a dependency arrow 
leading from the XBlock to the Django plugin. However, rewriting the request handler 
implementation as a Django plugin view came at a cost. Although the code moved 
into a view that can run outside the XBlock runtime, the views still needed access to 
LTI configuration data.



KEY COUPLING 
POINTS

1. The plugin views implement 
REQUEST HANDLING by calling 
XBlock handlers.

2. The plugin views read 
CONFIGURATION DATA from the 
XBlock.

3. The plugin views read 
CONTEXTUAL DATA from the 
platform.

80

This brings us to our second coupling point.



KEY COUPLING 
POINTS:
CONFIGURATION 
DATA
━ Django plugin 

views access 
XBlock reference 
using block 
property.

81

Remember, when the Django view is executing, it will need access to LTI 
configuration data. It does this by reading the data from the XBlock reference that’s 
stored in the block property of the LtiConfiguration property. 

The issue here is that the modulestore is the source of truth for the majority of LTI 
configuration data. We thought, “what if the source of truth for the data could depend 
on the context the LTI launch is running in?” This brought us to our solution to this 
problem.



KEY COUPLING 
POINTS:
CONFIGURATION 
DATA
━ Django plugin 

views use block 
property 
depending on 
config_store field 
value.

82

We decided to make the LtiConfiguration model a sort of broker of LTI configuration 
data. It would define a few different ways that LTI configuration data could be stored 
and know where to read from. It turns out the LtiConfiguration model already had this 
feature. The model had a config_store field that described where the LTI configuration 
data was coming from. At the time, there were two options.

1. CONFIG_ON_XBLOCK: This told the model to read the configuration data 
from the XBlock via the block property.

2. CONFIG_EXTERNAL: This told the model to read from a Django plugin via a 
filter hook.

What we did is add a third option, CONFIG_ON_DB. This option told the model to 
read the configuration data from itself. We added all necessary configuration data as 
fields on the model to support this option.

This would allow a Django application to store all of the configuration data on an 
instance of the LtiConfiguration model instead of a small amount in the model and the 
remainder in the modulestore.

That’s why this arrow has become dotted and has been annotated with the 
config_store = CONFIG_ON_XBLOCK label. Although the direction of the arrow has 
not changed, the coupling has become loose and conditional on that field.

[However, the CONFIG_ON_DB option doesn’t work for the XBlock. It made sense for 



the source of truth for LTI configuration data to remain on the XBlock for the time 
being. There were over 55,000 LTI blocks on the platform, and it was out of scope for 
us to consider making the LtiConfiguration model the source of truth for the XBlock 
too. Although this is not ideal, it was sufficient for decoupling the data storage.]



KEY COUPLING 
POINTS

1. The plugin views implement 
REQUEST HANDLING by calling 
XBlock handlers.

2. The plugin views read 
CONFIGURATION DATA from the 
XBlock.

3. The plugin views read 
CONTEXTUAL DATA from the 
platform.

83

Lastly, we need to tackle the issue of contextual data.



KEY COUPLING 
POINTS:
CONTEXTUAL
DATA
━ Compatibility 

module imports 
Python APIs from 
the platform.

84

The relationship between the Django plugin and the platform APIs exists because the 
Django plugin needs access to contextual data that is defined by the platform. These 
data may include things like a user email, the user’s roles, the course the launch is 
occurring in, and so on. 

The issue is that how a piece of contextual data, like a user’s roles, is defined and 
retrieved depends on the context that an LTI launch is occurring in. Our goal was to 
enable the LTI library to be used in a variety of contexts. We knew we could not have 
this library be context aware and know how to, say, retrieve a list of user roles in every 
place it’s installed. Because the LTI implementation and the XBlock were coupled, the 
Django views were doing the job of retrieving all the contextual data from the platform 
and incorporating the data into the launch.

Our decision was to invert this pattern and to have users of the library supply a 
defined set of contextual data to the library before starting an LTI launch.



KEY COUPLING 
POINTS:
CONTEXTUAL
DATA
━ Installing 

application 
supplies contextual 
data to Django 
plugin views.

85

Now, instead of the plugin calling the platform APIs, it gets all the contextual data it 
needs from the installing context. In this case, that’s the XBlock.

But what is this contextual data?



KEY COUPLING 
POINTS:
CONTEXTUAL
DATA
━ Django plugin 

views no longer 
rely on platform 
Python APIs for 
contextual data.

86

By doing this, we can remove the dependency of the Django plugin on the platform 
Python APIs.

But what, exactly, is this contextual data?



CONTEXTUAL
DATA
━ We introduced a 

Lti1p3LaunchData 
data class to 
communicate 
contextual data.

87

We created a simple data class to store all LTI contextual data that a user of the 
library would need to supply to the LTI library. The user of the library would import the 
data class, create an instance of it, and pass it to the LTI library to be available 
throughout the LTI launch flow. 

But how does it actually get communicated from the installing application to the LTI 
library and then magically make its way through all of the LTI flow in a way that just 
“works”?

In order to understand this, we need to revisit how the LTI launch flow works.



LTI LAUNCH

88

Here is the LTI launch flow we discussed earlier. I’ve cut off the remainder of the 
launch flow to just focus on this initial part of the flow.



LTI LAUNCH
━ This is the Third 

Party Initiated 
Login Request.

89

Recall that this is called the Third Party Initiated Login Request.

There’s an important piece of the puzzle in this diagram, and I didn’t explain it to you 
originally. 



LTI LAUNCH
━ LTI launch link is a 

link to the tool’s 
Third Party 
Initiated Login 
URL.

90

I never actually explained to you what the “LTI Launch Link” is. What is this magical 
link that starts this entire flow?

Well, the third party initiated login request is what starts the LTI launch. Once that is 
done, the request and responses bounce between the Django plugin views and the 
tool through the browser. When the platform renders the page, it gets a URL to the 
tool’s third party login endpoint that it needs to either make a GET or POST request 
to. This is the LTI launch link.

The structure of this URL is important.



www.tool.com/login?lti_message_hint=123

LTI LAUNCH URL

91

Here is a look at what a third party login endpoint URL could look like if we were going 
to make a GET request to it. The important pieces are the query parameters, which 
are described in the LTI standard.  Of course, there are more parameters than just 
these, but the lti_message_hint parameter is the important to understanding the 
transmission of contextual data.



www.tool.com/login?lti_message_hint=123

LTI LAUNCH URL

92

The lti_message_hint is a parameter that is intended to supply context clues to the 
platform. After the third party initiated login request is made via the browser, the tool 
issues a response to the platform via the browser in the form of an authentication 
request. When the platform receives this authentication request, it has no idea what’s 
going on. It has lost all of the context it had when it generated the original third party 
initiated login request. For example, it can no longer answer the questions, “Who was 
the user that requested an LTI launch?”, “From where in the course content is this LTI 
launch occurring?”, and so on. That’s all lost.

The purpose of this parameter is for the platform to make whatever note of whatever it 
feels is appropriate to remind itself of this context. When the tool makes its 
authentication request to the platform, the standard requires that it include this two 
parameter unchanged.



www.tool.com/login?lti_message_hint=REF

LTI LAUNCH URL

93

We decided that we’d use this query parameter to hold a reference to the data class 
that stores the contextual information. The user of the library would pass an instance 
of the contextual data data class to the API function that generates the login URL. The 
function would insert a reference to this data class into the login URL. When the LTI 
launch is started, this reference would be passed around through the flow. Whenever 
the LTI library would need access to the contextual data, it would use the reference to 
get access to the contextual data.

Let’s take a look at what this looks like.



CONTEXTUAL
DATA

94

Here we have the original key components of our LTI implementation. In order to 
understand how the LTI launch link is used, we need to fill in a few more components.



CONTEXTUAL
DATA
━ XBlock has views 

for rendering the 
XBlock.

━ student_view 
renders learner 
view in the LMS.

95

First, we have XBlock views. These are Python methods invoked by the XBlock 
runtime to render the XBlock. These are defined by the XBlock API. The student_view 
method renders what the learner sees in the LMS.



CONTEXTUAL
DATA
━ Python API 

function generates 
LTI launch URL.

96

Next, we have a Python API in the lti-consumer-repository. It’s contains the function 
that generates an LTI launch URL.

Now, let’s take a look at what happens when a learner visits an LTI component in the 
LMS.



CONTEXTUAL
DATA
━ XBlock 

student_view 
handles request to 
render the XBlock.

97

When a learner visits an LTI component, the student_view function is called to render 
the student view.



CONTEXTUAL
DATA
━ student_view 

collects contextual 
launch data and 
instantiates 
Lti1p3LaunchData 
data class. 

98

But what is this magical reference? The reference is a reference to the launch data. It 
had to somehow be stored by the LTI library before the third party initiated login URL 
so that it could be retrieved after receiving the authentication request. We went 
through a few iterations of what this reference could be.



CONTEXTUAL
DATA
━ student_view calls 

Python API 
function to 
generate LTI 
launch URL.

99

The student_view calls the Python API to generate the LTI launch URL.



CONTEXTUAL
DATA
━ LTI launch link is 

rendered in the 
courseware.

━ Learner clicks LTI 
launch link, and 
the Third Party 
Initiated Login 
Request is made, 
sending the 
lti_message_hint.

100

The Python API generates an LTI launch URL, returns it to the student_view, and the 
launch link is rendered on the page. When the learner clicks the link, the LTI launch 
will begin. At this point, the platform has made the third party initiated login request via 
the browser.



CONTEXTUAL
DATA
━ Tool responds by 

making the 
Authentication 
Request, sending 
back the 
lti_message_hint 
unchanged.

101

Eventually, the tool will respond to the third party initiate login request with the 
authentication request via the browser. It makes a request to the platform’s 
authentication endpoint. Notice that it sends back the lti_message_hint parameter 
unchanged



CONTEXTUAL
DATA
━ Cache stores 

contextual data 
long enough for an 
LTI launch to occur.

102

We settled on storing the contextual data in a cache and including the cache key as 
the lti_message_hint.



FINAL STATE
━ This is the current 

state of the LTI 
library.

103

This is the final, current state of the xblock-lti-consumer library after all of the 
decoupling work.



FINAL STATE
━ This is the current 

state of the LTI 
library.

104

Importantly, you’ll notice that all the solid arrows are pointing from the user of the LTI 
library (i.e. the LTI XBlock) to the library, not vice-versa. This means that the LTI 
library is free to be used broadly across a variety of Djangoapps.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

105

You now understand what we did, but you may be wondering how you can leverage 
these changes to do an LTI launch from your application.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

106

Next, we’re going to learn how easy it is to set up an LTI launch in your Django 
application.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS

107

There are six easy steps to setting up an LTI 1.3 launch in your Djangoapp.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
━ This is your 

Djangoapp.

━ This assumes you 
have a 
corresponding 
microfrontend.

108

First, you have your Djangoapp.

This example assumes you have a corresponding microfrontend (MFE) and are not 
server-side rendering. It’ll work just fine in the latter case; you just wouldn’t send the 
LTI launch URL to the MFE in a backend-for-frontend (BFFE) endpoint response, for 
example.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
━ Your Djangoapp 

will have views.

━ Let’s say it will have 
a BFFE endpoint 
that returns the LTI 
launch URL.

109

Your Djangoapp will have views. If you’re running an MFE, this may be a 
backend-for-frontend (BFFE) endpoint that will return an LTI launch URL for the MFE 
to render to the learner.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
━ Your Djangoapp 

will have 
contextual data to 
send via the LTI 
launch.

━ Let’s say it gets it 
from it’s internal 
Python API.

110

Next, you’ll have contextual data about the LTI launch and some way to collect it. 
Let’s say you do that using your Python API.

Now, we’re ready to set up the LTI launch.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
1. Install the 

xblock-lti-consumer
library into your 
Djangoapp.

111

The first step is to install the xblock-lti-consumer library into your Djangoapp.

For simplicity’s sake, I’ve only shown the relevant pieces here. But you will install the 
entirety of the library, including the LTI XBlock.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
2. Store LTI 

configuration data 
in the 
LtiConfiguration 
Django model.

112

Next, you will store LTI configuration data in the xblock-lti-consumer’s LtiConfiguration 
model. You will set the config_store field to CONFIG_ON_DB to indicate to the model 
that the full scope of LTI configuration data is stored on it. This way, it will not attempt 
to read from the modulestore or the block property.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
3. Import 

Lti1p3LaunchData 
data class from the 
data module.

113

Next, your view (or whatever code needs to generate an LTI launch URL) will import 
the Lti1p3LaunchData data class from the data module of the xblock-lti-consumer 
library.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
4. Collect contextual 

launch data.

114

Next, your view (or whatever code needs to generate an LTI launch URL) will call its 
Python APIs (or whatever code it uses to get contextual data) to collect the contextual 
data about the LTI launch.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
5. Create instance of 

Lti1p3LaunchData 
data class.

115

Next, your view (or whatever code needs to generate an LTI launch URL) will 
instantiate the Lti1p3LaunchData data class with the contextual data.



DJANGOAPP
LTI 1.3 LAUNCH: 
6 EASY STEPS
6. Call Python API 

function to 
generate LTI 
launch URL, 
passing in 
Lti1p3LaunchData 
data class instance.

116

Finally, your view (or whatever code needs to generate an LTI launch URL) will import 
and call the get_lti_1p3_launch_start_url function from the xblock-lti-consumer 
library’s Python API, passing the instance of the Lti1p3LaunchData data class. This 
function will return an LTI launch URL. Your Djangoapp can return this to the MFE to 
be rendered to the learner. Or it can be redirected to from the Djangoapp.

Once the request associated with the URL is made, the LTI launch will begin, and the 
request handling will be done by the xblock-lti-consumer’s Django plugin views.



1. Install the LTI library.

2. Store configuration data in the 
LtiConfiguration model.

3. Import Lti1p3LaunchData.

4. Collect contextual data.

5. Instantiate Lti1p3LaunchData 
with contextual data.

6. Pass the instance to 
get_lti_1p3_launch_start_url 
API function to get LTI launch 
URL.

DJANGOAPP
LTI 1.3 LAUNCH:
REVIEW

117

As a review, these are the six easy steps to set up an LTI 1.3 launch in your 
Djangoapp.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

118

We’ve reviewed the six easy steps to set up an LTI 1.3 launch in your Djangoapp.



AGENDA 1. What is LTI?

2. What was the problem?

3. What was our approach?

4. What’s the impact?

5. How did we do it?

6. How can you do an LTI 1.3 launch 
from your application?

7. How can you help?

119

Now, let’s end with how you can help or get involved. This will be a discussions of the 
next steps we need to take to further improve our LTI implementation.



NEXT STEPS

120

This is a review of the current state of our LTI implementation.



NEXT STEPS
━ Remove LTI 

configuration data 
from the XBlock 
and the 
modulestore.

━ Store LTI 
configuration data 
in the Django 
model.

121

We would like to remove LTI configuration data from the modulestore. Instead, we’d 
like to store LTI configuration data in the Django LTI configuration model (or in a 
plugin via the filter hook, as described by the CONFIG_EXTERNAL config_store 
option).



NEXT STEPS

122

If we do this, we can remove this dependency entirely. The Django LTI configuration 
model no longer needs a block property.



NEXT STEPS
━ Decouple LTI 

Advantage 
Services views in 
the Django plugin 
views.

123

I mentioned we would not be discussing LTI Advantage Services today. That’s 
because the views that implement these service endpoints suffer from the same kind 
of coupling. We’d like to fully decouple these service endpoints as well.



NEXT STEPS
━ Separate LTI 

implementation 
into LTI XBlock and 
LTI library.

124

Once we’ve done this, we can create a firmer boundary between the LTI XBlock and 
the LTI library.



NEXT STEPS
━ Provide 

stand-alone LTI 
library for use 
across the edX 
platform.

125

And, eventually, we can break the LTI library out into its own installable library, 
providing us an independent, core implementation of LTI that can be used throughout 
the ecosystem.



GETTING IN 
TOUCH

━ EMAIL

━ mroytman@2u.com

━ OPEN EDX SLACK

━ @mroytman

━ #lti

━ #lti-1-3

126

That brings us to the end of today’s talk.

If you have any further questions, comments, or concerns, please feel to reach out at 
any time.



QUESTIONS?

127


