Building Successful Open edX Instructors from Non-Faculty Domain Experts

Julie Mullen Ph.D, Lauren Edwards and Vijay Gadepally Ph.D

Open edX Conference

October 12, 2015

This work is sponsored by the Department of the Air Force, under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Goal

Mentor and develop practicing engineers and scientists,

while fulfilling program missions with short time horizons.

Outline

- Course Creation Challenges
- Case Study
- Lessons Learned

Introduction to MIT Lincoln Laboratory

Established 1951

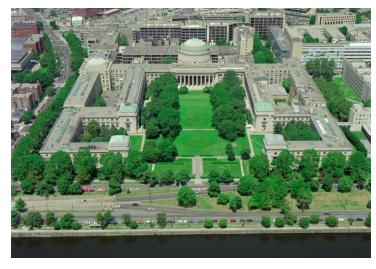
Cambridge, MA


Lexington, MA

Introduction to MIT Lincoln Laboratory

Established 1951

Cambridge, MA


Lexington, MA

Introduction to MIT Lincoln Laboratory

Established 1951

Cambridge, MA

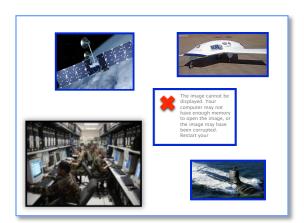
Academic

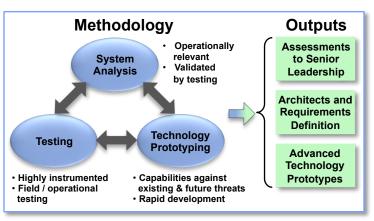
Lexington, MA

DoD Sponsored Federally Funded Research and Development Center (FFRDC), operated by MIT

Between Academia and Industry Putting Ideas to Work Building Prototypes

- Opportunities to work on the realization of the research
- "Building and testing prototypes distinguishes MIT Lincoln Laboratory from academia...."





Between Academia and Industry Supporting National Centers of Excellence

Multi-Missions

Architecture Analysis thru Detailed Design

Rapid Prototyping

National Level
Conferences and Workshops

University Affiliations

Trusted Government Advisor

Instructor Distinctions: Professional Roles

Technical Staff

- Staff Roles
 - Applied Research:
 - Creating solutions to National Problems
 - Dissemination of knowledge via publications and conferences
 - Briefing government leaders on technology challenges and solutions
 - Mentoring colleagues in the process of achieving project goals
- Staff degrees a mix of BS, MS and Ph.D

Instructor Distinctions: Professional Roles

Faculty

- Faculty Roles
 - Teaching
 - Research:
 - Creation of new knowledge via research and scholarship
 - Dissemination of knowledge via publications
 - Mentoring graduate students
 - Community service to institution
- Faculty generally hold Ph.D degrees

Technical Staff

- Staff Roles
 - Applied Research:
 - Creating solutions to National Problems
 - Dissemination of knowledge via publications and conferences
 - Briefing government leaders on technology challenges and solutions
 - Mentoring colleagues in the process of achieving project goals
- Staff degrees a mix of BS, MS and Ph.D

Instructor Distinctions: Teaching Experience

Faculty

- Student interaction
 - 1-to-many (courses/ classroom)
 - 1-to-1 (academic advisor)
- Courses are generally in sequence with pre-requisites
- Course material is standard
 - Develop intuitive feel for where students get confused and lost
 - Can draw on experience with course content as either instructor or student.
 - Have textbooks and content libraries to draw upon

Instructor Distinctions: Teaching Experience

Faculty

- Student interaction
 - 1-to-many (courses/ classroom)
 - 1-to-1 (academic advisor)
- Courses are generally in sequence with pre-requisites
- Course material is standard
 - Develop intuitive feel for where students get confused and lost
 - Can draw on experience with course content as either instructor or student.
 - Have textbooks and content libraries to draw upon

Technical Staff

- Student interaction
 - mentoring new employees
- Course material is generally novel or covers narrow topic in great depth.
 - Not part of an academic curriculum,
 - No previous experience to draw on – either as student or instructor
 - No textbooks
 - Course is creation of content library
- Can't assume students have pre-requisites

Instructor Distinctions: Teaching Experience

Faculty

- Student interaction
 - 1-to-many (courses/ classroom)
 - 1-to-1 (academic advisor)
- Courses are generally in sequence with pre-requisites
- Course material is standard
 - Develop intuitive feel for where students get confused and lost
 - Can draw on experience with course content as either instructor or student.
 - Have textbooks and content libraries to draw upon

Technical Staff

- Student interaction
 - mentoring new employees
- Course material is generally novel or covers narrow topic in great depth.
 - Not part of an academic curriculum,
 - No previous experience to draw on – either as student or instructor
 - No textbooks
 - Course is creation of content library
- Can't assume students have pre-requisites

Same goal, different starting points.

Student Distinctions

Academic

- Undergraduate Students
 - Young adults
 - Full time
 - Building understanding of specific or inter-related domain, but focus on a single domain
- Graduate Students
 - Full or part time
 - Focus on deeper learning of disciple
 - Course of studies may or may not align with current job roles
- Generally degree driven

Student Distinctions

Academic

- Undergraduate Students
 - Young adults
 - Full time
 - Building understanding of specific or inter-related domain, but focus on a single domain
- Graduate Students
 - Full or part time
 - Focus on deeper learning of disciple
 - Course of studies may or may not align with current job roles
- Generally degree driven

Professional

- Students
 - Working professionals, civilian, government and military
 - Part time, short sequences
 - Knowledge requirements
 - Refresher
 - Filling gaps in existing knowledge base
 - Extend or deepen understanding of a subject area
- Driven by
 - Need for knowledge to complete job assignment
 - Certification requirements
 - Personal interest

Course Design

Challenges

- Brief vs teach = tell vs show
 - Instructors have minimal experience in course design
 - Instructors are expert briefers (telling) but need to be teachers (showing all the details)
 - Presenter is asked questions, faculty intersperse lecture with questions
 - Faculty questions are natural breaks and material review
- Lack of existing
 - Content to draw on
 - Previous courses to act as examples
- Students arrive with broader range of competencies

Course Design

Challenges

- Brief vs teach = tell vs show
 - Instructors have minimal experience in course design
 - Instructors are expert briefers (telling) but need to be teachers (showing all the details)
 - Presenter is asked questions, faculty intersperse lecture with questions
 - Faculty questions are natural breaks and material review
- · Lack of existing
 - Content to draw on
 - Previous courses to act as examples
- Students arrive with broader range of competencies

Strategies

- Shift Instructor focus
 - From "what am I telling the audience" to "what do they need to understand to be successful"
 - Actively consider how to gauge student level of understanding
- New focus affects
 - Selection of content
 - Granularity of content
 - Method of delivery
 - Development of assessments
 - Interactions with students
- Modules support broad range student backgrounds:
 - Provide necessary background
 - Skip familiar material

Course Creation

Issues For Academic and Professionals

- Content Preparation
 - Slides
 - Scripts
 - Software
 - Examples

- Lack of Experience with
 - Video Capture
 - Microphone use
 - Tablets use for derivations

Course Creation

Issues For Academic and Professionals

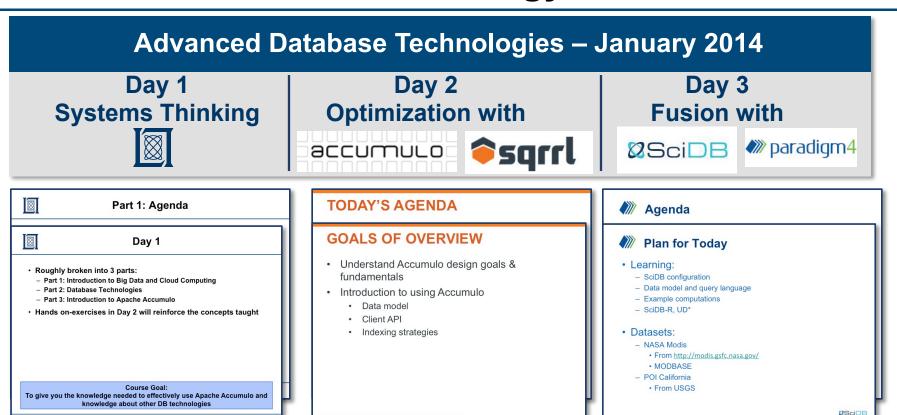
- Content Preparation
 - Slides
 - Scripts
 - Software
 - Examples

- Lack of Experience with
 - Video Capture
 - Microphone use
 - Tablets use for derivations

Strategy

Training!

Outline


Course Creation Challenges

- Case Study
 - Lessons Learned

Case Study: Evolution of Advanced Database Technology Course

Traditional Workshop Format

- Content
 - Delivered via slides and lectures
 - Mixture of theory, training instruction and vendor marketing information
- Hands-on Examples worked in teams

paradigm4

Case Study: Evolution of Advanced Database Technology Course

Advanced Database Technologies – January 2014

Day 1
Systems Thinking

Day 2
Optimization with

ccumuco 🎓 sqrrl

Day 3
Fusion with

2SciDB

>>> paradigm4

Advanced Accumulo Design – August 2014

Internal Course Offering Over 2 Half Days

- Content
 - Delivered via slides and lectures
 - Mixture of theory and training instruction
 - Natural breaks were built into slides via questions simulating faculty in classroom
- Hands-on Examples worked in teams

Case Study: Evolution of Advanced Database Technology Course

Advanced Database Technologies – January 2014

Day 1
Systems Thinking

Day 2
Optimization with

accumulo

♦sqrrl

Day 3
Fusion with

>>> paradigm4

Advanced Accumulo Design – August 2014

MOOC Offering – 2015

LLX

Course Started - May 03, 2015 at 23:00 UTC

LLX02 Advanced Database Technologies

View Course

<u>Unenroll</u>

Course Design

Challenges

- Brief vs teach = tell vs show
 - Instructors have minimal experience in course design
 - Instructors are expert briefers (telling) but need to be teachers (showing all the details)
 - Presenter is asked questions, faculty intersperse lecture with questions
 - Faculty questions are natural breaks and material review
- · Lack of existing
 - Content to draw on
 - Previous courses to act as examples
- Students arrive with broader range of competencies

Strategies

- Shift Instructor focus
 - From "what am I telling the audience" to "what do they need to understand to be successful"
 - Actively consider how to gauge student level of understanding
- Modules support broad range student backgrounds:
 - Provide necessary background
 - Skip familiar material
 - New focus affects
 - Selection of content
 - Granularity of content
 - Method of delivery
 - Development of assessments
 - Interactions with students

Computer Science Discovery Course Design for open edX platform

Step 1. Review the course and extract essential questions

Data Challenge

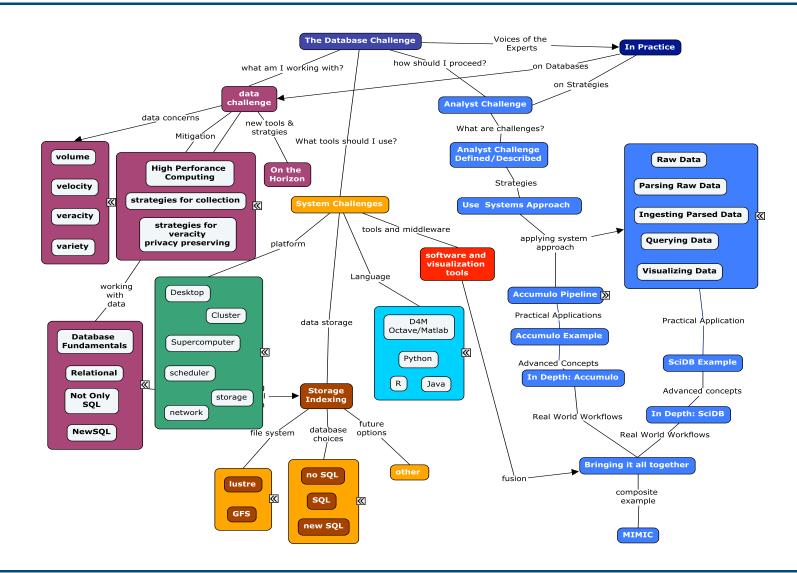
What am I working with?

System Challenge

What tools should I use?

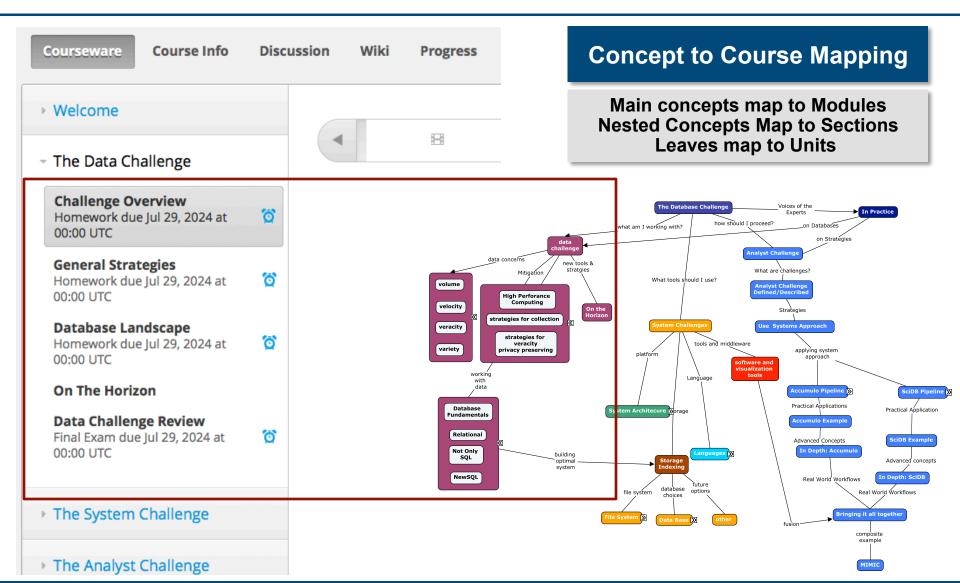
Analyst Challenge

How should I proceed?


Putting it together

How do I integrate it?

- Step 2. Use questions to define broad themes and select concepts to include in course
- Step 3. Connected the concepts into coherent learning modules, aka content map or visual syllabus
- Step 4. Used content map to create course outline



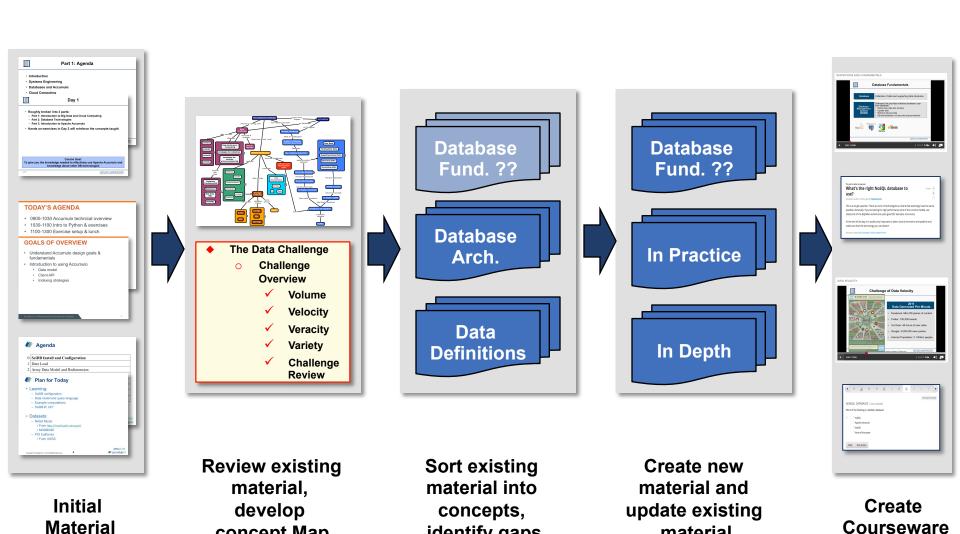
Building the Content Map: Exploded View

Connecting Content Map to Open edX Course

Advanced Database Technologies Traditional Syllabus

- Welcome
 - Course Overview and Goals
 - Meet the Instructors
- The Data Challenge
 - Challenge Overview
 - Challenge of Data Volume
 - Challenge of Data Velocity
 - Challenge of Data Veracity
 - Challenge of Data Variety
 - Challenge Review
 - General Strategies
 - High Performance Computing
 - Strategies for Collection
 - Strategies for Privacy Preserving
 - Database Landscape
 - Database Fundamentals
 - ✓ SQL
 - ✓ NoSQL
 - ✓ NewSQL
 - ✓ Database Trade-offs Summary
 - On the Horizon

- The System Challenge
 - System Architecture
 - Database Architecture
 - Language Overview
 - D4M
- ♦ The Analyst Challenge
 - Introduction
 - Accumulo Pipeline
 - Accumulo Example
 - In Depth: Accumulo
 - SciDB Pipeline
 - SciDB Example
 - o In Depth:SciDB
- Bringing it Altogether
 - Composite example
- In Practice
 - Mike Stonebraker
 - Sam Madden
- Summary
 - Review
 - Exam



Summary of Course Revamp

identify gaps

Open edX Conference- 29 JSM 10/12/2015

concept Map

material

Outline

- Course Creation Challenges
- Case Study

Lessons Learned

Lessons Learned

Course Design

- Having existing materials doesn't necessarily mean less design work
- Focus on goal: to help a student build a mental model
- Reiterate "brief = tell, teach = show"
- It's a Process!
 - Articulate the process, it makes it more accessible
 - Provide tangible examples of the process
 - Feedback from initial videos provides input into content creation and update

Course Creation

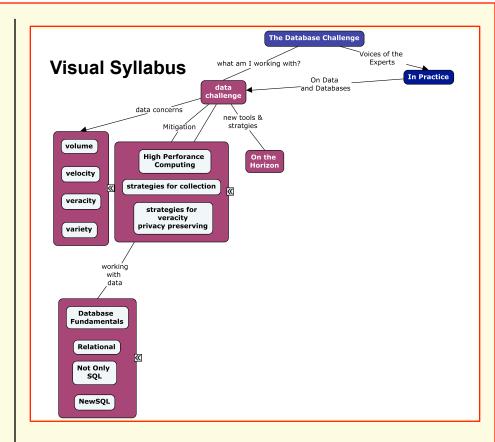
- Script your video
- Practice your script
 - Writing and speaking vocabulary very different
 - You will identify additional gaps
- Build out your slides, there is more control than with animations
- Take small steps and remember...it's a process.



Backup

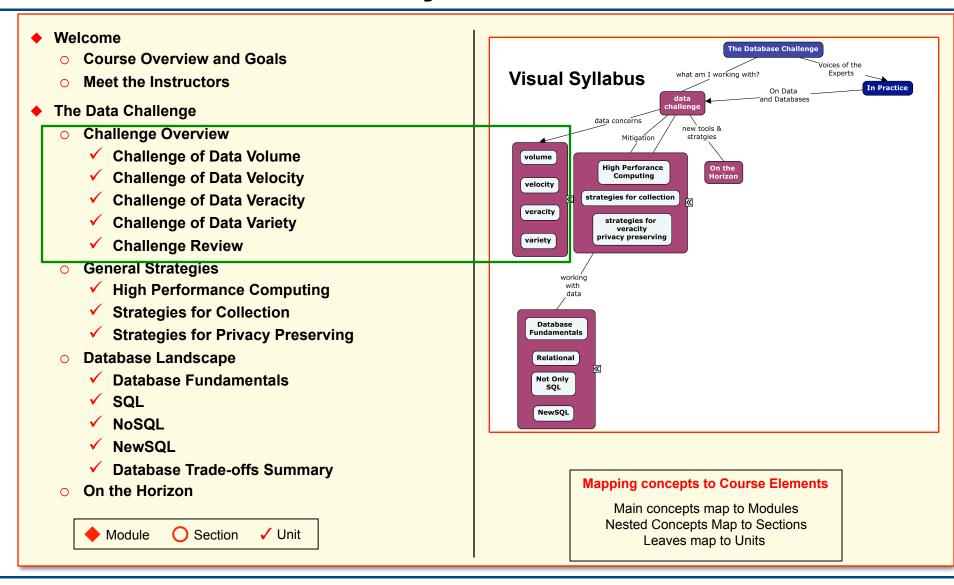
Advanced Database Technologies Syllabus

- Welcome
 - Course Overview and Goals
 - Meet the Instructors
- The Data Challenge
 - Challenge Overview
 - ✓ Challenge of Data Volume
 - ✓ Challenge of Data Velocity
 - Challenge of Data Veracity
 - ✓ Challenge of Data Variety
 - ✓ Challenge Review
 - General Strategies
 - High Performance Computing
 - ✓ Strategies for Collection
 - Strategies for Privacy Preserving
 - Database Landscape
 - Database Fundamentals
 - ✓ SQL
 - ✓ NoSQL
 - ✓ NewSQL
 - ✓ Database Trade-offs Summary
 - On the Horizon



Advanced Database Technologies Syllabus

- Welcome
 - Course Overview and Goals
 - Meet the Instructors
- The Data Challenge
 - Challenge Overview
 - ✓ Challenge of Data Volume
 - Challenge of Data Velocity
 - Challenge of Data Veracity
 - Challenge of Data Variety
 - Challenge Review
 - General Strategies
 - High Performance Computing
 - Strategies for Collection
 - Strategies for Privacy Preserving
 - Database Landscape
 - Database Fundamentals
 - ✓ SQL
 - ✓ NoSQL
 - ✓ NewSQL
 - ✓ Database Trade-offs Summary
 - On the Horizon



Mapping concepts to Course Elements

Main concepts map to Modules Nested Concepts Map to Sections Leaves map to Units

Advanced Database Technologies Syllabus

