
CLOVeR: An Optimized Repository for Customizable Learning Objects

José Wallison F. da Silva 1, Cidcley T. de Souza 2

Graduate Program in Computer Science
Federal Institute of Ceará - IFCE

Fortaleza, Brazil
wallison.felix@ppgcc.ifce.edu.br 1, cidcley@ifce.edu.br 2

Maria de Fátima C. de Souza 3

Institute Virtual University
Federal University of Ceará - UFC

Fortaleza, Brazil
fatimasouza@virtual.ufc.br 3

Abstract—Despite reusability being a Learning Objects (LO)
core feature, sometimes they demand modifications to fit the
new use context. This adaptation process must be easy and
rapid. However, several LO are produced in a way that
changes need to be done at source code, requiring technical
knowledge. Guided Customization (GC) aims at enabling the
user to execute adaptations without this requirement. It allows
changes at interface level, which simplifies customization of
some resource aspects. LO with GC strategy are named
Customizable Learning Objects (CLO). However, when CLO
and their Customized Versions (CV) are stored like a package
of files in a traditional Learning Object Repository (LOR),
duplications are scattered throughout the repository, since
different CV of same CLO have common unchanged files. This
paper presents a proposal of repository that avoids this
replication. Considering that CLO executable and media files
(images, audios and videos) are the ones which consume more
space in repository, repository evaluation demonstrates that in
“worst case scenario” (all media files are replaced on
customization) the proposal behaves like a traditional LOR
concerning disk space consumption. In the “best case scenario”
(no media file is replaced) the proposed approach proves more
efficient, whereas it shares unchanged media.

Keywords-learning object; guided customization;
customizable learning object; learning object repository

I. INTRODUCTION
In the last years, many definitions have been proposed

for Leaning Objects (LO), including definitions considering
the learning aspect and the technological aspect [1]. Between
them, one of the most widespread definition and used in this
work is the Wiley’s definition. It describes LO as “any
digital resource that can be reused to support learning” [2].
Despite LO’s definitions differ in some aspects, reusability is
a LO core aspect listed in all definitions [1].

The reuse of LO affects education in two ways: it reduces
costs in general and contributes to the increase in quality of
resources [3]. However, for LO to be reused, it is necessary
to publish them in repositories that allows potential users to
find them. Named as Learning Object Repository (LOR),
they are online databases to store, manage and share LO,
where these resources can be found by metadata [4] [5].

However, the sharing this resource type is not sufficient
for enabling its reuse. In order to be reused effectively, the
resource needs to fit new use context or to allow adaptation
[1]. Reference [6] said that educational resources are free to
be used by others only if they enable users to execute four
actions (known as “4Rs”). Revise (to adapt, adjust, modify,
or alter the content) is one of them. Even so, there is no

guarantee that users have technological and pedagogical
capacity to execute the necessary adaptations [7]. Since
several LO still are produced as monolithic blocks which
modifications need to be done at source code level, requiring
technical knowledge [8] [9].

In this context, Guided Customization (GC) was applied
to learning objects of animation/simulation type, a procedure
that gave rise to Customizable Leaning Objects (CLO) [9].
GC is a strategy that allows the CLO users to execute
customizations at resource interface level without demand
any technical knowledge [9]. This guarantees more
autonomy to teachers and provides financial advantages,
since the time for adaption stage is reduced [8] [9]. GC also
limits customizations according to user’s Degree of Freedom
(DF), a permission level assigned based on user profile. It
objectives to ensure that modifications do not remove the
initial pedagogical goals of CLO [8] [9].

CLO are composed by a set of linked screens named as
Scenes, which are formed by a group of components with
pedagogical potential that can be of five types: text; button;
image; audio; and video. Each one of these components have
a set of attributes that values determine the component state
[9]. CLO eliminates some barriers of cultural type that limits
reuse of LO. With them, for example, users can translate all
texts in a simple way and can replace media files
(images/videos) by media files more familiar to leaners [9].

Since LO of animation/simulation type are composed of
executable file, media files and control flow, it is not
recommended to store CLO and their Customized Versions
(CV) in traditional LOR, because these repositories store LO
as a package of all files that compose them, working as a LO
deposit [10]. In this case, many duplications are scattered
throughout repository, since different CV of same CLO have
common unchanged files that could be shared between them.

 This paper presents a proposal of repository most
appropriate for CLO. It includes a versioning strategy, which
defines the relation between CV, facilitating its management
and avoiding duplication of CLO unchanged files.

II. CLOVER REPOSITORY
The proposed repository was named as CLOVeR

(Customizable Learning Object VErsioning Repository). It is
accessible and manageable from CLOWebPlatform, an open
and responsive web platform, like recommended in [7].

The platform has functionalities to store, search, browse
(browsing in CV tree of a CLO) and download CLO and CV.
These operations are considered core functions related to LO
aspect in a LOR [11]. In relation to metadata aspect, it is
possible to store and view resources metadata, core functions

2017 IEEE 17th International Conference on Advanced Learning Technologies

2161-377X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICALT.2017.114

76

for this aspect in a LOR [11]. The platform also provides a
RESTful API, whereby it is possible to add new CLO/CV in
the CLOVeR and to get specific CLO/CV stored in repository
by their URI. It enables communication (add/get resources)
in an automatic way, allowing to link CLOVeR with other
applications.

The repository also stores information about users that
can sign up to receive a DF to customize CLO and access
authorization for CLOWebPlatform restricted operations.

The resources submit to CLOVeR and the resource
retrieval from it happens in package format (Fig. 1). These
packages encapsulates elements that compose resources,
such as executable and media (images, audios and videos)
files. Packages also includes JSON files with information
about the resource, as metadata based on IEEE LOM
Standard [12] and components states in the resource version.

A. CLO Deployment Package (CLO-DP)
Illustrated in Fig. 1(a), it is the package format to include

a new CLO in CLOVeR. It contains: LOM.json, a file with
CLO metadata, but with a structure flexible; MANIFEST.MF
file, a text file with information for the CLO-DP processing;
and executable_files directory, a directory with one
subdirectory to each CLO executable file, whereas the same
CLO can need different executables to distinct execution
environments. Subdirectories in executable_files are named
as the executable file extension and is composed by:
executable file itself; CLOName_extension.json (executable
file metadata); CLOName.json (all components grouped by
scenes); and components subdirectory (media files).

B. CLO Package (CLO-P)
Illustrated in Fig. 1(b), it is the package format that CLO

and CV are downloaded from repository. It packages: CLO
executable file required; CLOName.json (file containing the
state of all component on desired version); components
directory (media files); and a token.txt (file to control
resource customization and CV inclusion in repository).

C. CV Deployment Package (CV-DP)
Illustrated in Fig. 1(c), it is the package format used to

add a new CV in CLOVeR. It is formed by: CLOName.json
(file with the new components states after customization);
components directory (new media files if any was replaced
on customization); and the token.txt from CLO-P source
package.

III. IMPLEMENTATION OF CLOVER REPOSITORY
The CLOVeR is composed of two databases, a model

adopted by some LOR [13]. CLO and their CV are stored in
a non-relational document oriented database, the MongoDB,
which stores documents in a JSON binary format [14].
Information about registered users and access authorization
to CLOWebPlatform are persisted in a PostgreSQL database.

A. CLOVeR Repository Data Model
When a new CLO is included in CLOVeR, three JSON

file types packaged in the CLO-DP are stored like three
different MongoDB documents types. Root Descriptor

(RDescriptor) saves the CLO metadata defined in LOM.json.
One Executable File Descriptor (EFDescriptor) is created for
each CLO executable file to store metadata defined in
CLOName_extension.json. The components state is persisted
as Components Descriptor (CDescriptor), one for each CLO
executable file. Still on CLO inclusion, executable and media
files are persisted in server filesystem in a directory structure
intended for CLO. Descriptors references them by their path.

In respect of the CV inclusion, each new version is stored
like as a Version Descriptor (VDescriptor) in MongoDB.
This descriptor are composed by: version number; a small
number of metadata describing the version; reference to
EFDescriptor of hierarchy wherein is inserted; reference to
version from it was generate; and component attributes
modified in relation to initial components state.

All relationships result on a CLO Versioning Hierarchy.
Fig. 2 exemplifies it. Despite it is not recommended defining
relationships on non-relational databases, tree data structure
is well supported by MongoDB [15].

The versioning proposed guarantees control version as
advised for LO, capturing the syntactical and the semantic
changes [16], relating versions and preventing that a version
impact the use of any other version [17].

One of the versioning strategy aspect aims at avoiding
data replication is that only differences between version and
initial components states are stored in VDescriptor. In this
case, just one merge is necessary to obtain a CV regardless
of level in the hierarchy. This was inspired on Git, a control
version system that aims to minimize merge amount required
to retrieve a file version [18]. The other aspect is related to
executable and media files, which consume more space in
repository. These files are saved in a directory structure
where executable file is kept in subdirectory named as
executable file extension, while media files are kept in
components subdirectory. They are stored once to all
Versioning Hierarchy. For each new version, only media

Figure 1. Package types structure: (a) CLO-DP; (b) CLO-P; (c) CV-DP.

Figure 2. Example of CLO Versioning Hierarchy.

77

files replaced on customization process are persisted. This
approach avoids the replication of unchanged media files
between Customized Versions of a CLO.

IV. EVALUATION AND RESULTS
The CLOVeR efficiency was evaluated comparing Disk

Space Consumption (DSC) with a traditional LOR, wherein
LO are stored as a package of files [10]. The evaluation was
realized using a CLO with 1 executable file (5MB) and 100
components distributed in 5 scenes, being 55 among them of
media type (1MB each). With compression strategy used, it
resulted in a CLO-P of 54,121KB.

Three test cases were executed. CLO was customized
four times on each one, but with a different amount of
replaced media files. Since executable and media files are
responsible for more space occupation in the repository, how
much more media file are replaced on customization process,
more space are allocated to new version:

• Worst Case Scenario: fifty-five media files replaced
for others of the same size (1MB).

• Medium Case Scenario: twenty-eight media files
replaced for others of the same size (1MB).

• Best Case Scenario: no media file replaced.
DSC verifications were executed in an environment

running Windows 10 OS with NTFS filesystem. The values
were obtained in kilobytes adding the space occupied in
MongoDB (shell command db.stats().dataSize) and
the filesystem space used to store executable and media files.

If a traditional LOR was used, on three test cases a new
CLO-P would be inserted in integral form for each version.
Considering that CLO-P used on test cases had 54,121KB, it
was possible to make a projection of DSC. Fig. 3 illustrates
the test cases results and shows the CLOVeR consumption
behavior in comparison with a traditional LOR.

In Worst Case Scenario, CLOVeR behaves like a
traditional LOR about DSC, having a growth rate slightly
higher. However, in the two other scenarios (Medium and
Best) the results demonstrate that CLOVeR is substantially
efficient when compared with traditional LOR, whereas
unchanged media files are not replicated. These results are
meaningful, as the Worst Case Scenario tend to occur rarely.

V. CONCLUSION AND FUTURE WORK
The proposed repository has a versioning of resource, an

important aspect for LOR to stimulate LO reuse [5], that

guarantee efficiency storage of CLO and its CV and enables
a flexible resource management. Therefore, it is more
recommended use CLOVeR as repository for sharing these
resources than using a traditional LOR. However, this
efficiency could be enhanced if common media files were
not replicated also between different CLO. For this reason,
next proposed repository version will include a versioning of
media file in order to control its versions and to centralize
files referenced by resources.

REFERENCES
[1] J. Sinclair, M. Joy, J. Yau, S. Hagan, “A Practice-Oriented Review of

Learning Objects,” IEEE Transactions on Learning Technologies,
vol. 6, no. 2, 2013, pp. 177-192.

[2] D. Wiley, “Learning Object Design and Sequencing Theory,” PhD
disertation, Dept. of Instructional Psychology and Technology,
Brigham Young Univ., Provo, 2000.

[3] D. Sampson, P. Zervas, “A Workflow for Learning Objects Lifecycle
and Reuse: Towards Evaluating Cost Effective Reuse,” Educational
Technology & Society, vol. 14, no. 4, 2011, pp. 64–76.

[4] R. Lehman, “Learning object repositories,” New Directions for Adult
and Continuing Education, vol. 2007, no. 113, 2007, pp. 57-66.

[5] R. McGreal, “A Typology of Learning Object Repositories,”
Handbook on Information Technologies for Education and Training,
Springer, 2008, p. 5-28.

[6] D. Wiley, T. Bliss, M. McEwen, “Open Educational Resources: a
review of the literature,” Handbook of Research on Educational
Communications and Technology, Springer, 2014, p. 781-789.

[7] N. Butcher, A Basic Guide to Open Educational Resources (OER),
UNESCO and Commonwealth of Learning, 2015.

[8] M.F. Souza, J.A. Castro-Filho, R. Andrade, “Model-driven
Development in the Production of Customizable Learning Objects,”
Proc. 10th IEEE International Conference on Advanced Learning
Technologies (ICALT 2010), IEEE, 2010, pp. 701-702.

[9] M.F. Souza, J.A. Castro-Filho, R. Andrade, “Applying Model-Driven
Development for Building Customizable Learning Objects,” IEEE
Technology and Engineering Education, vol. 6, no. 1, 2011, pp.22-29.

[10] H. dos Santos, G. Carrillo, C. Cechinel, X. Ochoa, “Towards the use
of Semantic Learning Object Repositories: evaluating queries
performance in two different RDF implementations,” Bulletin of the
IEEE Technical Committee on Learning Technology, vol. 16, no. 4,
2014, pp. 6-9.

[11] G. Sampson, P. Zervas, “Learning Object Repositories as Knowledge
Management Systems,” Knowledge Management & E-Learning: An
International Journal, vol. 5, no. 2, 2013, pp. 117-136.

[12] IEEE Std 1484.12.1, Learning Object Metadata (LOM), IEEE, 2002.
[13] X. Ochoa, G. Carrillo, C. Cechinel, “Use of a Semantic Learning

Repository to Facilitate the Creation of Modern e-Learning Systems,”
Proc. 15th International Conference on Human Computer Interaction
(INTERACCION 2014), ACM, 2014, pp. 92-98.

[14] BSON Types, MongoDB Inc.; https://docs.mongodb.com/manual
/reference/bson-types/.

[15] Model Tree Structures in MongoDB, MongoDB Inc.; https://docs
.mongodb.com/manual/tutorial/model-tree-structures/.

[16] C. Brooks, J. Cooke, J. Vassileva, “Versioning of Learning Objects,”
Proc. 3rd IEEE International Conference on Advanced Learning
Technologies (ICALT 2003), IEEE, 2003, pp. 296-297.

[17] M. Tate and D. Hoshek, “A model for the Effective Management of
Re-usable Learning Objects (RLOs): Lessons from a Case Study,”
Interdisciplinary Journal of E-Learning and Learning Objects, vol. 5,
2009, pp. 51-73.

[18] S. Chacon and B. Straub, Pro git, Apress, 2014, p. 497-501.

 Figure 3. CLOVeR and traditional LOR disk space consumption.

78

