
Analytics from Scratch:
Learning from your learners

Nick Ettlinger

Who is Nick?

● Data analyst at EdX
● Degree in Statistics and Machine learning
● Passionate about learning

What you will learn

● How to approach your data with an
analytical mindset

● Useful analytics using your Open edx data
● Code snippets to take home

Three areas we will cover

1 Course Quality

Who are the successful

learners?

What are the engaging

courses?

2 Learner Activity

Which learners have been

active recently?

Which courses have the most

active learners?

3 Course
Recommendations

Want to recommend new

courses for a learner after

they finish one?

Wish you had a quantitative

way to look at course

similarity?

Answering a question using data

● Capture the business problem
● Find and understand the necessary data
● Get the meat out of the data
● Follow-up and next steps

Course Quality

Course quality: business understanding

Course completion rate is a metric that counts the percent of enrolled users who
completed the course by passing.

● High completion rate
○ Spread the word

○ Learn why learners like it?

● Low completion
○ Split into pieces

○ Adjust difficulty level

○ Learners stuck somewhere?

How do we know if a learner has completed a course?

<screenshot of fake student_courseenrollment

table>

<screenshot of fake

grades_persistentcoursegrade table>

student_courseenrollment tracks the current

enrollment state for all learners in all courses.

A learner has an enrollment if they have started a

course

grades_persistentcoursegrade tracks course

grade for all learners in all courses.

Learners with a passed_timestamp that is not null

have completed the course or had reached a

passing grade at some time in the past.

User completion status

Each row represents a student in a course

<screenshot of query output>

SELECT
 enroll.user_id,
 enroll.course_id,
 created AS enroll_date,
 passed_timestamp AS pass_date,
 CASE
 WHEN passed_timestamp IS NOT NULL THEN 1
 ELSE 0
 END AS completed
FROM
 edxapp.student_courseenrollment AS enroll
 LEFT JOIN
 (SELECT
 user_id, course_id, passed_timestamp
 FROM
 edxapp.grades_persistentcoursegrade
 WHERE
 passed_timestamp IS NOT NULL) AS grades
ON grades.user_id = enroll.user_id
 AND grades.course_id = enroll.course_id

Course completion rates

Each row represents a course

<screenshot of query output>

SELECT
 course_id, COUNT(*) AS enrolls,
 AVG(completed) AS completion_rate,
 SUM(completed) AS total_completions
FROM
 (SELECT
 enroll.user_id, enroll.course_id,
 created AS enroll_date,
 passed_timestamp AS pass_date,
 CASE
 WHEN passed_timestamp IS NOT NULL THEN 1
 ELSE 0 END AS completed
 FROM
 edxapp.student_courseenrollment AS enroll
 LEFT JOIN (SELECT
 user_id, course_id, passed_timestamp
 FROM
 edxapp.grades_persistentcoursegrade
 WHERE
 passed_timestamp IS NOT NULL) AS grades ON
grades.user_id = enroll.user_id
 AND grades.course_id = enroll.course_id) A
GROUP BY course_id

Follow up and extensions

Low ≠ Bad Course

High ≠ Good Course

Typical course: 1% - 5%

Possible extensions

● Adjustments for learners who haven’t had

time to finish yet.

● Breaking out the completion rate per

education level to account for learner

ability level.

● Take a look at a high completion rate

course and see why learners find it

particularly engaging.

Active Learners

Learner activity leads to learning

Looking at users who have and haven’t been on your platform lately can help inform
a number of decisions.

● Learners: Who should you email / contact

● Courses: Current activity in my course

● Platform: Monthly active users is good for comparisons

Showing up is the first step

<screenshot of fake courseware_studentmodule

table>
courseware_studentmodule tracks the

individual block state for all learners in all

courses

A “block” is a small section of course content

Blocks are modified each time a learner loads a

new page in the LMS

How active are you?

Each row represents a student in a course

<screenshot of query output>

SELECT
 course_id,
 student_id,
 DATE(MAX(modified)) AS last_active_date,
 CASE WHEN
 MAX(modified) >

DATE_ADD(CURRENT_TIMESTAMP(),
 INTERVAL - 7 DAY)
 THEN 1 ELSE 0
 END AS active_last_week,
 CASE WHEN
 MAX(modified) >

DATE_ADD(CURRENT_TIMESTAMP(),
 INTERVAL - 1 MONTH)
 THEN 1 ELSE 0
 END AS active_last_month
FROM
 edxapp.courseware_studentmodule
GROUP BY course_id , student_id;

Active learners per course

Each row represents a course

Results are aggregated from prior query

 SELECT
 course_id,
 COUNT(*) AS all_learners,
 SUM(active_last_month) AS active_last_month,
 SUM(active_last_week) AS active_last_week
FROM
 (SELECT
 course_id, student_id,
 CASE WHEN MAX(modified) >
 DATE_ADD(CURRENT_TIMESTAMP(),

INTERVAL - 1 MONTH)
THEN 1 ELSE 0

 END AS active_last_month,
 CASE WHEN MAX(modified) >

DATE_ADD(CURRENT_TIMESTAMP(),
INTERVAL - 7 DAY)
THEN 1 ELSE 0

 END AS active_last_week
 FROM
 edxapp.courseware_studentmodule
 GROUP BY course_id , student_id) A
GROUP BY course_id

Follow up and extensions

So what?

Now we know who was recently learning and

who wasn’t. We also know how much activity is

happening in each of our courses.

Possible extensions

● Counting total active learners on whole site

● Make a list of inactive users and encourage

them to come back.

● Take a look at a very active course and see

why learners find it particularly engaging

Course Recommendations

“Learners who took this course also took”

Anyone who has shopped on Amazon has probably seen their “Customers
who bought this item also bought” sections. This is a classic data driven form
of recommendation. Let’s make our own implementation!

How our data is structured

Learners who enroll in multiple courses generally indicate that both those

topics are interesting to them.

In aggregate, if courses A and B share a lot of the same learners, we would

expect that a learner in A probably will like course B.

Our chart here visualizes such a relationship

However, it is possible to collapse the diagram,

Showing only courses, not learners

Courses

Learners

A B

1

A co-enrollment matrix tells us how many
learners take a given pair of courses
We will create a link between two courses if a
learner enrolls in both of them.

1. Apply this to all of our data, gives us a

co-enrollment matrix.

2. Stats + Science has the highest number of

co-enrolling learners.

3. -> So do we suggest Science to the Stats

students?

For example, five students enrolled in both the

science and stats course offered by FakeX.

You Took: We Suggest

Stats Science

How do we make this matrix?

We pull a list of all enrollments, and then using a

little linear algebra, we are able to collapse the

data to give us co-enrollments.

1. This converts the list of user-course pairs

into a matrix of one column per unique user

and one row per unique course.

2. We take the cross product of that matrix,

and now we have unique courses as rows

and columns.

#this is the raw data
enrolls = run_query(“

SELECT user_id, course_id
FROM edxapp.student_courseenrollment”

#check the data
str(enrolls)
#building the matrix
user.fac = factor(enrolls[,1])
course.fac = factor(enrolls[,2])
cm = sparseMatrix(

as.numeric(user.fac), as.numeric(course.fac),
dimnames = list(as.character(levels(user.fac)),
as.character(levels(course.fac))),

 x = 1)
calculating co-occurrences (matrix times transpose of matrix)
cv = t(cm) %*% cm
setting self references
diag(cv) = 0
dict = unique(enrolls[,2])
dict = sort(dict)

Generating the recommendation

We have two ways of making a course

recommendation:

1. (Unweighted - prefer popular) Using the

course with the largest count of

co-enrollments with your course.

2. (Weighted - adjust for popularity) Dividing

the co-enrollment counts by the number of

enrollments in the other course. I.e. the

percent of enrollments in course B that are

shared with course A.

typed = c(
 'UTAustinX/UT.7.01x/3T2014',
 'UQx/Write101x/3T2014')
input = cv[typed,]
#calculate the number of co-enrollments for each of our courses
unweighted = colSums(input)
#calculate the weighted # of co-enrollments
weighted = unweighted/colSums(cv[,names(unweighted)])
#building sorted reference tables for both types
un_dict = dict[order(unweighted, decreasing = T)]
#un_dict$score = sort(unweighted, decreasing = T)
w_dict = dict[order(weighted,decreasing = T)]
#view the top 6 for each category
head(un_dict)
head(w_dict)

Follow up and extensions

So what?

● Simple framework
○ You already have the data

● Flexible framework
○ One or more input courses
○ One or more recommendations

Possible extensions

● Scoring current learners and sending

personalized email suggestions.

● Make a quiz for new visitors and use the

quiz responses to generate suggestions

for them.

● Add “you might also be interested in..”

sections to your site.

You Took: We Suggest

English Grammar and Style Principles of Written English, Part 1

Foundations of Data Analysis English for Doing Business in Asia -
Speaking

Audience participation:

What are you doing with your data?

Thank you!

Github code - https://github.com/Nickett3/OpenedX2018-Analytics/

Openedx Slack - @Nick the Data guy

https://github.com/Nickett3/OpenedX2018-Analytics/

Questions?

