
My name is Jason Goodell, I’m a developer with Global Knowledge and my expertise is in server side development in Python. Unfortunately Sam Boyarsky is unable to
join us today at Open edX. This talk is going to cover the integration of Open edX into an enterprise systems, specifically the Global Knowledge enterprise environment.
Instead of talking in detail about development specifics, this talk will concentrate on architecture and design of the extensions to Open edX created to integrate Open
edX. This talk is also a review of Global Knowledge’s integration approach, warts and all. After deciding on this topic, and making the decision to not delve deeply into
implementation specifics I realized there is still a lot of content to cover. So lets get started.

Extending Open edX to
Support Integration with

Enterprise Systems
Jason Goodell

Software Engineer
Global Knowledge Training LLC.

My name is Jason Goodell, I’m a developer with Global Knowledge and my expertise is in server side development in Python. Unfortunately Sam Boyarsky is unable to
join us today at Open edX. This talk is going to cover the integration of Open edX into an enterprise systems, specifically the Global Knowledge enterprise environment.
Instead of talking in detail about development specifics, this talk will concentrate on architecture and design of the extensions to Open edX created to integrate Open
edX. This talk is also a review of Global Knowledge’s integration approach, warts and all. After deciding on this topic, and making the decision to not delve deeply into
implementation specifics I realized there is still a lot of content to cover. So lets get started.

First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.

Traffic Over
HTTP

First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.

Non Open edX
Systems

First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.

Open edX

First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.

Data

First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.

Additions

First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.

Misc Other

First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.

First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.

To appreciate the approach to integrating Open edX at Global Knowledge, there are key characteristics to our approach to understand. [click] Open edX is a delegate
system to Global Knowledge’s existing back office processes and systems. [click] User and enrollment records migrate to Open edX from Global Knowledge’s back office
systems. For Global Knowledge user’s and enrollments will not be created in Open edX. Instead these records will be created in Global Knowledge’s back office systems.
[click] Integrations are designed to mitigating risk from changes to the Open edX platform. We create additional functionality by adding Django apps as plugins. With our
plugins depending on Open edX core code instead of modifying Open edX. [click] Global Knowledge records are pushed to Open edX through custom web APIs, and
placed on Open edX’s relational database management system in a set of landing tables. Global Knowledge’s existing environment of back office systems, which
manage purchasing, student account management and course enrollment are the systems of truth for Global Knowledge’s business. These back office systems not only
support self-paced courses within Open edX, but also support Global Knowledge’s other course modalities; instructor lead and virtual instructor lead.

Characteristics

To appreciate the approach to integrating Open edX at Global Knowledge, there are key characteristics to our approach to understand. [click] Open edX is a delegate
system to Global Knowledge’s existing back office processes and systems. [click] User and enrollment records migrate to Open edX from Global Knowledge’s back office
systems. For Global Knowledge user’s and enrollments will not be created in Open edX. Instead these records will be created in Global Knowledge’s back office systems.
[click] Integrations are designed to mitigating risk from changes to the Open edX platform. We create additional functionality by adding Django apps as plugins. With our
plugins depending on Open edX core code instead of modifying Open edX. [click] Global Knowledge records are pushed to Open edX through custom web APIs, and
placed on Open edX’s relational database management system in a set of landing tables. Global Knowledge’s existing environment of back office systems, which
manage purchasing, student account management and course enrollment are the systems of truth for Global Knowledge’s business. These back office systems not only
support self-paced courses within Open edX, but also support Global Knowledge’s other course modalities; instructor lead and virtual instructor lead.

Characteristics
• Open edX will be a delegate system to existing back

office process’ and systems.

To appreciate the approach to integrating Open edX at Global Knowledge, there are key characteristics to our approach to understand. [click] Open edX is a delegate
system to Global Knowledge’s existing back office processes and systems. [click] User and enrollment records migrate to Open edX from Global Knowledge’s back office
systems. For Global Knowledge user’s and enrollments will not be created in Open edX. Instead these records will be created in Global Knowledge’s back office systems.
[click] Integrations are designed to mitigating risk from changes to the Open edX platform. We create additional functionality by adding Django apps as plugins. With our
plugins depending on Open edX core code instead of modifying Open edX. [click] Global Knowledge records are pushed to Open edX through custom web APIs, and
placed on Open edX’s relational database management system in a set of landing tables. Global Knowledge’s existing environment of back office systems, which
manage purchasing, student account management and course enrollment are the systems of truth for Global Knowledge’s business. These back office systems not only
support self-paced courses within Open edX, but also support Global Knowledge’s other course modalities; instructor lead and virtual instructor lead.

Characteristics
• Open edX will be a delegate system to existing back

office process’ and systems.

• User Records and Enrollment records will migrate
to Open edX from the back office.

To appreciate the approach to integrating Open edX at Global Knowledge, there are key characteristics to our approach to understand. [click] Open edX is a delegate
system to Global Knowledge’s existing back office processes and systems. [click] User and enrollment records migrate to Open edX from Global Knowledge’s back office
systems. For Global Knowledge user’s and enrollments will not be created in Open edX. Instead these records will be created in Global Knowledge’s back office systems.
[click] Integrations are designed to mitigating risk from changes to the Open edX platform. We create additional functionality by adding Django apps as plugins. With our
plugins depending on Open edX core code instead of modifying Open edX. [click] Global Knowledge records are pushed to Open edX through custom web APIs, and
placed on Open edX’s relational database management system in a set of landing tables. Global Knowledge’s existing environment of back office systems, which
manage purchasing, student account management and course enrollment are the systems of truth for Global Knowledge’s business. These back office systems not only
support self-paced courses within Open edX, but also support Global Knowledge’s other course modalities; instructor lead and virtual instructor lead.

Characteristics
• Open edX will be a delegate system to existing back

office process’ and systems.

• User Records and Enrollment records will migrate
to Open edX from the back office.

• Mitigate risk from changes to the Open edX platform.

To appreciate the approach to integrating Open edX at Global Knowledge, there are key characteristics to our approach to understand. [click] Open edX is a delegate
system to Global Knowledge’s existing back office processes and systems. [click] User and enrollment records migrate to Open edX from Global Knowledge’s back office
systems. For Global Knowledge user’s and enrollments will not be created in Open edX. Instead these records will be created in Global Knowledge’s back office systems.
[click] Integrations are designed to mitigating risk from changes to the Open edX platform. We create additional functionality by adding Django apps as plugins. With our
plugins depending on Open edX core code instead of modifying Open edX. [click] Global Knowledge records are pushed to Open edX through custom web APIs, and
placed on Open edX’s relational database management system in a set of landing tables. Global Knowledge’s existing environment of back office systems, which
manage purchasing, student account management and course enrollment are the systems of truth for Global Knowledge’s business. These back office systems not only
support self-paced courses within Open edX, but also support Global Knowledge’s other course modalities; instructor lead and virtual instructor lead.

Characteristics
• Open edX will be a delegate system to existing back

office process’ and systems.

• User Records and Enrollment records will migrate
to Open edX from the back office.

• Mitigate risk from changes to the Open edX platform.

• Push records to Open edX through a web API,
placing records in landing tables on Open edX’s
RDBMS.

To appreciate the approach to integrating Open edX at Global Knowledge, there are key characteristics to our approach to understand. [click] Open edX is a delegate
system to Global Knowledge’s existing back office processes and systems. [click] User and enrollment records migrate to Open edX from Global Knowledge’s back office
systems. For Global Knowledge user’s and enrollments will not be created in Open edX. Instead these records will be created in Global Knowledge’s back office systems.
[click] Integrations are designed to mitigating risk from changes to the Open edX platform. We create additional functionality by adding Django apps as plugins. With our
plugins depending on Open edX core code instead of modifying Open edX. [click] Global Knowledge records are pushed to Open edX through custom web APIs, and
placed on Open edX’s relational database management system in a set of landing tables. Global Knowledge’s existing environment of back office systems, which
manage purchasing, student account management and course enrollment are the systems of truth for Global Knowledge’s business. These back office systems not only
support self-paced courses within Open edX, but also support Global Knowledge’s other course modalities; instructor lead and virtual instructor lead.

I’d like to start with a brief overview of the environment and systems that out instance of Open edX interacts with, to provide context for how Open edX is integrated
within Global Knowledge.

Environment
Overview

I’d like to start with a brief overview of the environment and systems that out instance of Open edX interacts with, to provide context for how Open edX is integrated
within Global Knowledge.

Firewall

Internet

Intranet

Public Facing
Production
Instance

Open edX RDBMS

Web
API

Private Facing
Production
Instance

Custom
xblocks

Custom
xblocks

Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records,
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.

Firewall

Internet

Intranet

Back Office
Systems

Processes Events

Data

Public Facing
Production
Instance

Open edX RDBMS

Web
API

Private Facing
Production
Instance

Custom
xblocks

Custom
xblocksMyGK

User Gateway
to Learning

Locus of User
and Enrollment

Information

Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records,
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.

Firewall

Internet

Intranet

Back Office
Systems

Processes Events

Data

Public Facing
Production
Instance

Open edX RDBMS

Web
API

Private Facing
Production
Instance

Custom
xblocks

Custom
xblocksMyGK

User Gateway
to Learning

Locus of User
and Enrollment

Information

Bi
di

re
ct

io
na

l
D

at
a

Fl
ow

Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records,
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.

Identity Server

Authentication
User

Records
Authorization

Single Sign On

Firewall

Internet

Intranet

Back Office
Systems

Processes Events

Data

Public Facing
Production
Instance

Open edX RDBMS

Web
API

Private Facing
Production
Instance

Custom
xblocks

Custom
xblocksMyGK

User Gateway
to Learning

Locus of User
and Enrollment

Information

Bi
di

re
ct

io
na

l
D

at
a

Fl
ow

Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records,
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.

Identity Server

Authentication
User

Records
Authorization

Single Sign On

Firewall

Internet

Intranet

Back Office
Systems

Processes Events

Data

Public Facing
Production
Instance

Open edX RDBMS

Web
API

Private Facing
Production
Instance

Custom
xblocks

Custom
xblocksMyGK

User Gateway
to Learning

Locus of User
and Enrollment

Information
Login Services

Bi
di

re
ct

io
na

l
D

at
a

Fl
ow

Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records,
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.

Identity Server

Authentication
User

Records
Authorization

Single Sign On

Firewall

Internet

Intranet

Back Office
Systems

Processes Events

Data

Public Facing
Production
Instance

Open edX RDBMS

Web
API

Private Facing
Production
Instance

Custom
xblocks

Custom
xblocks

Login
Services

MyGK
User Gateway

to Learning
Locus of User
and Enrollment

Information
Login Services

Bi
di

re
ct

io
na

l
D

at
a

Fl
ow

Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records,
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.

Identity Server

Authentication
User

Records
Authorization

Single Sign On

Firewall

Internet

Intranet

Back Office
Systems

Processes Events

Data

Public Facing
Production
Instance

Open edX RDBMS

Web
API

Private Facing
Production
Instance

Custom
xblocks

Custom
xblocks

Login
Services

MyGK
User Gateway

to Learning
Locus of User
and Enrollment

Information
Login Services

Bi
di

re
ct

io
na

l
D

at
a

Fl
ow

Event Triggered Request
Migrates RecordsEvent

Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records,
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.

I’d like to start with the migration of user and enrollment records into Open edX. Open edX is not a system of record at Global Knowledge. Creation of users, courses and
enrollments happen outside of Open edX and are migrated and imported into Open edX. The necessary data is migrated from other systems into Open edX through APIs.
User and enrollment data is migrated thru the API, while course creation and importing is a separate set of systems and processes that are outside the scope of this talk.

Migration of Records

I’d like to start with the migration of user and enrollment records into Open edX. Open edX is not a system of record at Global Knowledge. Creation of users, courses and
enrollments happen outside of Open edX and are migrated and imported into Open edX. The necessary data is migrated from other systems into Open edX through APIs.
User and enrollment data is migrated thru the API, while course creation and importing is a separate set of systems and processes that are outside the scope of this talk.

Resource Document
Definition

The migrated enrollment records are defined as a web resource for portability and cross platform compatibility. [click] The records are defined as JSON and adhere to an
agreement between the different teams responsible for the different Global Knowledge systems involved. [click] The record is coarse by intention, containing both
student/contact data and course enrollment data in the same JSON object definition. [click] The record is complete in its representation of the state of the student and
enrollment resource, [click] containing all information to create, update or replace a record in the landing tables on Open edX.

Resource Document
Definition

• MIME Type
application/json

The migrated enrollment records are defined as a web resource for portability and cross platform compatibility. [click] The records are defined as JSON and adhere to an
agreement between the different teams responsible for the different Global Knowledge systems involved. [click] The record is coarse by intention, containing both
student/contact data and course enrollment data in the same JSON object definition. [click] The record is complete in its representation of the state of the student and
enrollment resource, [click] containing all information to create, update or replace a record in the landing tables on Open edX.

Resource Document
Definition

• MIME Type
application/json

• Coarse, containing both
student/contact data and
enrollment data.

The migrated enrollment records are defined as a web resource for portability and cross platform compatibility. [click] The records are defined as JSON and adhere to an
agreement between the different teams responsible for the different Global Knowledge systems involved. [click] The record is coarse by intention, containing both
student/contact data and course enrollment data in the same JSON object definition. [click] The record is complete in its representation of the state of the student and
enrollment resource, [click] containing all information to create, update or replace a record in the landing tables on Open edX.

Resource Document
Definition

• MIME Type
application/json

• Coarse, containing both
student/contact data and
enrollment data.

• Atomic, each instance
contains the full state of
the resource.

The migrated enrollment records are defined as a web resource for portability and cross platform compatibility. [click] The records are defined as JSON and adhere to an
agreement between the different teams responsible for the different Global Knowledge systems involved. [click] The record is coarse by intention, containing both
student/contact data and course enrollment data in the same JSON object definition. [click] The record is complete in its representation of the state of the student and
enrollment resource, [click] containing all information to create, update or replace a record in the landing tables on Open edX.

Resource Document
Definition

• MIME Type
application/json

• Coarse, containing both
student/contact data and
enrollment data.

• Atomic, each instance
contains the full state of
the resource.

The migrated enrollment records are defined as a web resource for portability and cross platform compatibility. [click] The records are defined as JSON and adhere to an
agreement between the different teams responsible for the different Global Knowledge systems involved. [click] The record is coarse by intention, containing both
student/contact data and course enrollment data in the same JSON object definition. [click] The record is complete in its representation of the state of the student and
enrollment resource, [click] containing all information to create, update or replace a record in the landing tables on Open edX.

Web API Definition

The records are transferred to Open edX thru a web API with the following characteristics. [click] The web API uses bookmark-able URLs. The URL will always address
this student/contact, either returning the record or a 404 to indicate the record does not exist. The book markable URLs improve log entries by including the ID in the time
stamped logs, indicating when a particular record was migrated from Global Knowledge’s back office to Open edX. [click] The API constrains the accepted resources to
the JSON content type. Rejecting requests formatted in other types; XML, form data, etc. [click] The API makes idiomatic use of the methods and status’ available
through the HTTP protocol. Idiomatic use of the HTTP protocol removes the need to define additional actions or error indicators in the request or response bodies.

Web API Definition
• Book-Markable URL: /contacts/
<contact_id>/enrollments/

The records are transferred to Open edX thru a web API with the following characteristics. [click] The web API uses bookmark-able URLs. The URL will always address
this student/contact, either returning the record or a 404 to indicate the record does not exist. The book markable URLs improve log entries by including the ID in the time
stamped logs, indicating when a particular record was migrated from Global Knowledge’s back office to Open edX. [click] The API constrains the accepted resources to
the JSON content type. Rejecting requests formatted in other types; XML, form data, etc. [click] The API makes idiomatic use of the methods and status’ available
through the HTTP protocol. Idiomatic use of the HTTP protocol removes the need to define additional actions or error indicators in the request or response bodies.

Web API Definition
• Book-Markable URL: /contacts/
<contact_id>/enrollments/

• Constrains Resources by Content-Type:
application/json

The records are transferred to Open edX thru a web API with the following characteristics. [click] The web API uses bookmark-able URLs. The URL will always address
this student/contact, either returning the record or a 404 to indicate the record does not exist. The book markable URLs improve log entries by including the ID in the time
stamped logs, indicating when a particular record was migrated from Global Knowledge’s back office to Open edX. [click] The API constrains the accepted resources to
the JSON content type. Rejecting requests formatted in other types; XML, form data, etc. [click] The API makes idiomatic use of the methods and status’ available
through the HTTP protocol. Idiomatic use of the HTTP protocol removes the need to define additional actions or error indicators in the request or response bodies.

Web API Definition
• Book-Markable URL: /contacts/
<contact_id>/enrollments/

• Constrains Resources by Content-Type:
application/json

• Idiomatic Use of HTTP Methods and Status
Codes: Put for Create/Update with codes (200
for updated, 201 for created, 403, 405, 409 &
500) used to indicate status of request.

The records are transferred to Open edX thru a web API with the following characteristics. [click] The web API uses bookmark-able URLs. The URL will always address
this student/contact, either returning the record or a 404 to indicate the record does not exist. The book markable URLs improve log entries by including the ID in the time
stamped logs, indicating when a particular record was migrated from Global Knowledge’s back office to Open edX. [click] The API constrains the accepted resources to
the JSON content type. Rejecting requests formatted in other types; XML, form data, etc. [click] The API makes idiomatic use of the methods and status’ available
through the HTTP protocol. Idiomatic use of the HTTP protocol removes the need to define additional actions or error indicators in the request or response bodies.

Web API Implementation

How the API was developed and integrated into Open edX was equally important. The API implementation approach adheres to the following characteristics. [click] The
API will is implemented as a Django 1.8 compliant app.[click] The API uses the Django ReST Framework, standardizing the view implementation with existing views in
Open edX. [click] The Web API Django app was designed and developed to be Python package installable. Django apps are Python packages, and can be installed by
Python packaging tools like setuptools. [click] The API app is integrated through configuration with Open edX, no modifications to Open edX code are required, other
than additions to settings and configuration files. [click] The Web API URLs occupy a new namespace separate from Open edX URLs, avoiding URL collisions with
existing Open edX URLs. [click] The API has dependencies on core Open edX libraries for creating and updating edX native users and enrollments. Orchestrating rather
than modifying existing Open edX code to meet Global Knowledge’s business requirements.

Web API Implementation
• Django 1.8 Compliant App

How the API was developed and integrated into Open edX was equally important. The API implementation approach adheres to the following characteristics. [click] The
API will is implemented as a Django 1.8 compliant app.[click] The API uses the Django ReST Framework, standardizing the view implementation with existing views in
Open edX. [click] The Web API Django app was designed and developed to be Python package installable. Django apps are Python packages, and can be installed by
Python packaging tools like setuptools. [click] The API app is integrated through configuration with Open edX, no modifications to Open edX code are required, other
than additions to settings and configuration files. [click] The Web API URLs occupy a new namespace separate from Open edX URLs, avoiding URL collisions with
existing Open edX URLs. [click] The API has dependencies on core Open edX libraries for creating and updating edX native users and enrollments. Orchestrating rather
than modifying existing Open edX code to meet Global Knowledge’s business requirements.

Web API Implementation
• Django 1.8 Compliant App

• Uses the Django ReST Framework Package

How the API was developed and integrated into Open edX was equally important. The API implementation approach adheres to the following characteristics. [click] The
API will is implemented as a Django 1.8 compliant app.[click] The API uses the Django ReST Framework, standardizing the view implementation with existing views in
Open edX. [click] The Web API Django app was designed and developed to be Python package installable. Django apps are Python packages, and can be installed by
Python packaging tools like setuptools. [click] The API app is integrated through configuration with Open edX, no modifications to Open edX code are required, other
than additions to settings and configuration files. [click] The Web API URLs occupy a new namespace separate from Open edX URLs, avoiding URL collisions with
existing Open edX URLs. [click] The API has dependencies on core Open edX libraries for creating and updating edX native users and enrollments. Orchestrating rather
than modifying existing Open edX code to meet Global Knowledge’s business requirements.

Web API Implementation
• Django 1.8 Compliant App

• Uses the Django ReST Framework Package

• Python Package Installable

How the API was developed and integrated into Open edX was equally important. The API implementation approach adheres to the following characteristics. [click] The
API will is implemented as a Django 1.8 compliant app.[click] The API uses the Django ReST Framework, standardizing the view implementation with existing views in
Open edX. [click] The Web API Django app was designed and developed to be Python package installable. Django apps are Python packages, and can be installed by
Python packaging tools like setuptools. [click] The API app is integrated through configuration with Open edX, no modifications to Open edX code are required, other
than additions to settings and configuration files. [click] The Web API URLs occupy a new namespace separate from Open edX URLs, avoiding URL collisions with
existing Open edX URLs. [click] The API has dependencies on core Open edX libraries for creating and updating edX native users and enrollments. Orchestrating rather
than modifying existing Open edX code to meet Global Knowledge’s business requirements.

Web API Implementation
• Django 1.8 Compliant App

• Uses the Django ReST Framework Package

• Python Package Installable

• Integration Through Configuration Instead of Modification

How the API was developed and integrated into Open edX was equally important. The API implementation approach adheres to the following characteristics. [click] The
API will is implemented as a Django 1.8 compliant app.[click] The API uses the Django ReST Framework, standardizing the view implementation with existing views in
Open edX. [click] The Web API Django app was designed and developed to be Python package installable. Django apps are Python packages, and can be installed by
Python packaging tools like setuptools. [click] The API app is integrated through configuration with Open edX, no modifications to Open edX code are required, other
than additions to settings and configuration files. [click] The Web API URLs occupy a new namespace separate from Open edX URLs, avoiding URL collisions with
existing Open edX URLs. [click] The API has dependencies on core Open edX libraries for creating and updating edX native users and enrollments. Orchestrating rather
than modifying existing Open edX code to meet Global Knowledge’s business requirements.

Web API Implementation
• Django 1.8 Compliant App

• Uses the Django ReST Framework Package

• Python Package Installable

• Integration Through Configuration Instead of Modification

• URL Mapping Extends Open edX URLs Under a /gk/
api/ Namespace

How the API was developed and integrated into Open edX was equally important. The API implementation approach adheres to the following characteristics. [click] The
API will is implemented as a Django 1.8 compliant app.[click] The API uses the Django ReST Framework, standardizing the view implementation with existing views in
Open edX. [click] The Web API Django app was designed and developed to be Python package installable. Django apps are Python packages, and can be installed by
Python packaging tools like setuptools. [click] The API app is integrated through configuration with Open edX, no modifications to Open edX code are required, other
than additions to settings and configuration files. [click] The Web API URLs occupy a new namespace separate from Open edX URLs, avoiding URL collisions with
existing Open edX URLs. [click] The API has dependencies on core Open edX libraries for creating and updating edX native users and enrollments. Orchestrating rather
than modifying existing Open edX code to meet Global Knowledge’s business requirements.

Web API Implementation
• Django 1.8 Compliant App

• Uses the Django ReST Framework Package

• Python Package Installable

• Integration Through Configuration Instead of Modification

• URL Mapping Extends Open edX URLs Under a /gk/
api/ Namespace

• App Depends on Open edX Core Libraries for Creating
and Updating Users and Enrollments

How the API was developed and integrated into Open edX was equally important. The API implementation approach adheres to the following characteristics. [click] The
API will is implemented as a Django 1.8 compliant app.[click] The API uses the Django ReST Framework, standardizing the view implementation with existing views in
Open edX. [click] The Web API Django app was designed and developed to be Python package installable. Django apps are Python packages, and can be installed by
Python packaging tools like setuptools. [click] The API app is integrated through configuration with Open edX, no modifications to Open edX code are required, other
than additions to settings and configuration files. [click] The Web API URLs occupy a new namespace separate from Open edX URLs, avoiding URL collisions with
existing Open edX URLs. [click] The API has dependencies on core Open edX libraries for creating and updating edX native users and enrollments. Orchestrating rather
than modifying existing Open edX code to meet Global Knowledge’s business requirements.

API Endpoint
PUT:/contacts/<contact_id>/enrollments/

RDBMS

New Resource
Created or Existing
Resource Updated

New or Updated
Resource has Course

that Does Not Exist

New or Updated
Resource is
Inconsistent

User Landing Table

Enrollment Landing Table

• Contact ID
• First Name
• Last Name
• Email

• Contact ID
• GK Course Code
• AccessStartDate
• AccessEndDate
• Enrollment ID

With an understanding of the what and where with regard to , lets look at how a record is received at the Web API. Records arriving at the Web API endpoint are validated
[click] and compared to existing resource records in the landing tables. The correct HTTP status code is returned by the Web API, indicating the status of the request to
the upstream system, 20X’s for success [click] or 40X’s [click] for errors. It is possible that for a 409, part of the record was been written to the landing tables successfully
[click], the body in the response, details what part of the record caused the conflict. A 403 will not be processed at all, and the response body details what attribute of the
resource is causing the fatal error.

Event Triggered
Request

Migrates Records

API Endpoint
PUT:/contacts/<contact_id>/enrollments/

RDBMS

New Resource
Created or Existing
Resource Updated

New or Updated
Resource has Course

that Does Not Exist

New or Updated
Resource is
Inconsistent

User Landing Table

Enrollment Landing Table

• Contact ID
• First Name
• Last Name
• Email

• Contact ID
• GK Course Code
• AccessStartDate
• AccessEndDate
• Enrollment ID

With an understanding of the what and where with regard to , lets look at how a record is received at the Web API. Records arriving at the Web API endpoint are validated
[click] and compared to existing resource records in the landing tables. The correct HTTP status code is returned by the Web API, indicating the status of the request to
the upstream system, 20X’s for success [click] or 40X’s [click] for errors. It is possible that for a 409, part of the record was been written to the landing tables successfully
[click], the body in the response, details what part of the record caused the conflict. A 403 will not be processed at all, and the response body details what attribute of the
resource is causing the fatal error.

Event Triggered
Request

Migrates Records

API Endpoint
PUT:/contacts/<contact_id>/enrollments/

RDBMS

New Resource
Created or Existing
Resource Updated

New or Updated
Resource has Course

that Does Not Exist

New or Updated
Resource is
Inconsistent

User Landing Table

Enrollment Landing Table

• Contact ID
• First Name
• Last Name
• Email

• Contact ID
• GK Course Code
• AccessStartDate
• AccessEndDate
• Enrollment ID

With an understanding of the what and where with regard to , lets look at how a record is received at the Web API. Records arriving at the Web API endpoint are validated
[click] and compared to existing resource records in the landing tables. The correct HTTP status code is returned by the Web API, indicating the status of the request to
the upstream system, 20X’s for success [click] or 40X’s [click] for errors. It is possible that for a 409, part of the record was been written to the landing tables successfully
[click], the body in the response, details what part of the record caused the conflict. A 403 will not be processed at all, and the response body details what attribute of the
resource is causing the fatal error.

Event Triggered
Request

Migrates Records

API Endpoint
PUT:/contacts/<contact_id>/enrollments/

RDBMS

Success
200

Created
201

New Resource
Created or Existing
Resource Updated

New or Updated
Resource has Course

that Does Not Exist

New or Updated
Resource is
Inconsistent

User Landing Table

Enrollment Landing Table

• Contact ID
• First Name
• Last Name
• Email

• Contact ID
• GK Course Code
• AccessStartDate
• AccessEndDate
• Enrollment ID

With an understanding of the what and where with regard to , lets look at how a record is received at the Web API. Records arriving at the Web API endpoint are validated
[click] and compared to existing resource records in the landing tables. The correct HTTP status code is returned by the Web API, indicating the status of the request to
the upstream system, 20X’s for success [click] or 40X’s [click] for errors. It is possible that for a 409, part of the record was been written to the landing tables successfully
[click], the body in the response, details what part of the record caused the conflict. A 403 will not be processed at all, and the response body details what attribute of the
resource is causing the fatal error.

Event Triggered
Request

Migrates Records

API Endpoint
PUT:/contacts/<contact_id>/enrollments/

RDBMS

Success
200

Created
201

New Resource
Created or Existing
Resource Updated

Conflict
409

New or Updated
Resource has Course

that Does Not Exist

New or Updated
Resource is
Inconsistent

User Landing Table

Enrollment Landing Table

• Contact ID
• First Name
• Last Name
• Email

• Contact ID
• GK Course Code
• AccessStartDate
• AccessEndDate
• Enrollment ID

With an understanding of the what and where with regard to , lets look at how a record is received at the Web API. Records arriving at the Web API endpoint are validated
[click] and compared to existing resource records in the landing tables. The correct HTTP status code is returned by the Web API, indicating the status of the request to
the upstream system, 20X’s for success [click] or 40X’s [click] for errors. It is possible that for a 409, part of the record was been written to the landing tables successfully
[click], the body in the response, details what part of the record caused the conflict. A 403 will not be processed at all, and the response body details what attribute of the
resource is causing the fatal error.

Event Triggered
Request

Migrates Records

API Endpoint
PUT:/contacts/<contact_id>/enrollments/

RDBMS

Success
200

Created
201

New Resource
Created or Existing
Resource Updated

Forbidden
403

Conflict
409

New or Updated
Resource has Course

that Does Not Exist

New or Updated
Resource is
Inconsistent

User Landing Table

Enrollment Landing Table

• Contact ID
• First Name
• Last Name
• Email

• Contact ID
• GK Course Code
• AccessStartDate
• AccessEndDate
• Enrollment ID

With an understanding of the what and where with regard to , lets look at how a record is received at the Web API. Records arriving at the Web API endpoint are validated
[click] and compared to existing resource records in the landing tables. The correct HTTP status code is returned by the Web API, indicating the status of the request to
the upstream system, 20X’s for success [click] or 40X’s [click] for errors. It is possible that for a 409, part of the record was been written to the landing tables successfully
[click], the body in the response, details what part of the record caused the conflict. A 403 will not be processed at all, and the response body details what attribute of the
resource is causing the fatal error.

Event Triggered
Request

Migrates Records

API Endpoint
PUT:/contacts/<contact_id>/enrollments/

RDBMS

Success
200

Created
201

New Resource
Created or Existing
Resource Updated

Forbidden
403

Conflict
409

New or Updated
Resource has Course

that Does Not Exist

New or Updated
Resource is
Inconsistent

User Landing Table

Enrollment Landing Table

• Contact ID
• First Name
• Last Name
• Email

• Contact ID
• GK Course Code
• AccessStartDate
• AccessEndDate
• Enrollment ID

With an understanding of the what and where with regard to , lets look at how a record is received at the Web API. Records arriving at the Web API endpoint are validated
[click] and compared to existing resource records in the landing tables. The correct HTTP status code is returned by the Web API, indicating the status of the request to
the upstream system, 20X’s for success [click] or 40X’s [click] for errors. It is possible that for a 409, part of the record was been written to the landing tables successfully
[click], the body in the response, details what part of the record caused the conflict. A 403 will not be processed at all, and the response body details what attribute of the
resource is causing the fatal error.

Creating & Updating
Open edX Students &

Enrollments

With the migration of the resources from the Global Knowledge back office to the landing tables in Open edX complete, we’ll turn our attention to how we integrated the
creation of the native student and enrollment records in Open edX.

Web API App

The Web API as a Django web app, contains URL routing and view components [click], with Global Knowledge business logic [click] encapsulated away from web
request and response management. The Open edX core libraries [click] are a dependency at the view and controller level. The processing or attempted processing of the
resource determines the response status and how the upstream services will manage the response. The landing tables create a record on Open edX for implementing
custom business logic for Global Knowledge, but Open edX native records still need to be created and updated in Open edX’s tables. The controllers orchestrate the
creation of the Open edX native user and enrollment records.

Web API App

URL Routing

The Web API as a Django web app, contains URL routing and view components [click], with Global Knowledge business logic [click] encapsulated away from web
request and response management. The Open edX core libraries [click] are a dependency at the view and controller level. The processing or attempted processing of the
resource determines the response status and how the upstream services will manage the response. The landing tables create a record on Open edX for implementing
custom business logic for Global Knowledge, but Open edX native records still need to be created and updated in Open edX’s tables. The controllers orchestrate the
creation of the Open edX native user and enrollment records.

Web API App

URL Routing

View

The Web API as a Django web app, contains URL routing and view components [click], with Global Knowledge business logic [click] encapsulated away from web
request and response management. The Open edX core libraries [click] are a dependency at the view and controller level. The processing or attempted processing of the
resource determines the response status and how the upstream services will manage the response. The landing tables create a record on Open edX for implementing
custom business logic for Global Knowledge, but Open edX native records still need to be created and updated in Open edX’s tables. The controllers orchestrate the
creation of the Open edX native user and enrollment records.

Web API App

URL Routing

View

App Logic/Controller

The Web API as a Django web app, contains URL routing and view components [click], with Global Knowledge business logic [click] encapsulated away from web
request and response management. The Open edX core libraries [click] are a dependency at the view and controller level. The processing or attempted processing of the
resource determines the response status and how the upstream services will manage the response. The landing tables create a record on Open edX for implementing
custom business logic for Global Knowledge, but Open edX native records still need to be created and updated in Open edX’s tables. The controllers orchestrate the
creation of the Open edX native user and enrollment records.

Web API App

Open edX Core

URL Routing

View

App Logic/Controller

The Web API as a Django web app, contains URL routing and view components [click], with Global Knowledge business logic [click] encapsulated away from web
request and response management. The Open edX core libraries [click] are a dependency at the view and controller level. The processing or attempted processing of the
resource determines the response status and how the upstream services will manage the response. The landing tables create a record on Open edX for implementing
custom business logic for Global Knowledge, but Open edX native records still need to be created and updated in Open edX’s tables. The controllers orchestrate the
creation of the Open edX native user and enrollment records.

With Open edX receiving and processing student and enrollment information, the necessary data for implementing additional integrations with Global Knowledge are now
available on Open edX. Lets look at some additional Open edX integrations performed at Global Knowledge.

Additional Integrations

With Open edX receiving and processing student and enrollment information, the necessary data for implementing additional integrations with Global Knowledge are now
available on Open edX. Lets look at some additional Open edX integrations performed at Global Knowledge.

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

• Mentor Contact Message Relay per Course

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

• Mentor Contact Message Relay per Course

• Support Contact Message Relay

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

• Mentor Contact Message Relay per Course

• Support Contact Message Relay

• Single Sign On via Third Party Authentication Integration

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

• Mentor Contact Message Relay per Course

• Support Contact Message Relay

• Single Sign On via Third Party Authentication Integration

• Custom xblocks

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

• Mentor Contact Message Relay per Course

• Support Contact Message Relay

• Single Sign On via Third Party Authentication Integration

• Custom xblocks

• Vimeo Player Integration

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

• Mentor Contact Message Relay per Course

• Support Contact Message Relay

• Single Sign On via Third Party Authentication Integration

• Custom xblocks

• Vimeo Player Integration

• Custom Labs

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

• Mentor Contact Message Relay per Course

• Support Contact Message Relay

• Single Sign On via Third Party Authentication Integration

• Custom xblocks

• Vimeo Player Integration

• Custom Labs

• Custom Sequencing

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

• APIs for Adding Functionality via Ajax

• Custom Endpoints that Forward Student Communications

• Mentor Contact Message Relay per Course

• Support Contact Message Relay

• Single Sign On via Third Party Authentication Integration

• Custom xblocks

• Vimeo Player Integration

• Custom Labs

• Custom Sequencing

• Custom Matrix

Some of the additional integrations we’ve performed at Global Knowledge are…[click through all] Next we will look at APIs for adding Ajax functionality.

For two Global Knowledge features we realized that we needed to extend the functionality of existing Open edX pages. We found the best way to go about doing this
was to add the necessary data to the pages by adding Javascript to the edX theming templates to make Ajax calls to custom web APIs. [click]

APIs for Ajax
Functionality

For two Global Knowledge features we realized that we needed to extend the functionality of existing Open edX pages. We found the best way to go about doing this
was to add the necessary data to the pages by adding Javascript to the edX theming templates to make Ajax calls to custom web APIs. [click]

Ajax API Definition

Similar to the web API for users and enrollments we have book markable URLs [click], request data is constrained to JSON [click], and we made idiomatic use of HTTP
methods and status codes [click]. A theme is emerging, the extensibility’s available through the development of Django apps for the server, and the ability to add
functionality on the client side with Open edX’s theming drive a lot of Open edX integrations at Global Knowledge.

Ajax API Definition
• Book-Markable URLs: /mentor/contacts/
<contact_id>/courses/<course_id>/ and
/support/contacts/<contact_id>/

Similar to the web API for users and enrollments we have book markable URLs [click], request data is constrained to JSON [click], and we made idiomatic use of HTTP
methods and status codes [click]. A theme is emerging, the extensibility’s available through the development of Django apps for the server, and the ability to add
functionality on the client side with Open edX’s theming drive a lot of Open edX integrations at Global Knowledge.

Ajax API Definition
• Book-Markable URLs: /mentor/contacts/
<contact_id>/courses/<course_id>/ and
/support/contacts/<contact_id>/

• Constrain by Content-Type: application/json

Similar to the web API for users and enrollments we have book markable URLs [click], request data is constrained to JSON [click], and we made idiomatic use of HTTP
methods and status codes [click]. A theme is emerging, the extensibility’s available through the development of Django apps for the server, and the ability to add
functionality on the client side with Open edX’s theming drive a lot of Open edX integrations at Global Knowledge.

Ajax API Definition
• Book-Markable URLs: /mentor/contacts/
<contact_id>/courses/<course_id>/ and
/support/contacts/<contact_id>/

• Constrain by Content-Type: application/json

• Idiomatic Use of HTTP Methods and Status
Codes: GET & POST for retrieve and create with
codes (200 for retrieved, 201 for created, 401,
404 and 405) used to indicate status of request.

Similar to the web API for users and enrollments we have book markable URLs [click], request data is constrained to JSON [click], and we made idiomatic use of HTTP
methods and status codes [click]. A theme is emerging, the extensibility’s available through the development of Django apps for the server, and the ability to add
functionality on the client side with Open edX’s theming drive a lot of Open edX integrations at Global Knowledge.

Ajax API Implementation

Again, similar to the web API implementation, the Ajax APIs are Django 1.8 compliant apps[click], the apps are python package installable [click], the apps integration
with Open edX is through configuration [click], the API extends the Open edX URLs under a custom namespace [click], and in this integration use of Django’s CSRF token
and auth access controls are used for security. [click] Using the existing CSRF and auth support protects the API without additional development work. Which is
important because this API sits outside the firewall.

Ajax API Implementation
• Django 1.8 Compliant

Again, similar to the web API implementation, the Ajax APIs are Django 1.8 compliant apps[click], the apps are python package installable [click], the apps integration
with Open edX is through configuration [click], the API extends the Open edX URLs under a custom namespace [click], and in this integration use of Django’s CSRF token
and auth access controls are used for security. [click] Using the existing CSRF and auth support protects the API without additional development work. Which is
important because this API sits outside the firewall.

Ajax API Implementation
• Django 1.8 Compliant

• Python Package Installable

Again, similar to the web API implementation, the Ajax APIs are Django 1.8 compliant apps[click], the apps are python package installable [click], the apps integration
with Open edX is through configuration [click], the API extends the Open edX URLs under a custom namespace [click], and in this integration use of Django’s CSRF token
and auth access controls are used for security. [click] Using the existing CSRF and auth support protects the API without additional development work. Which is
important because this API sits outside the firewall.

Ajax API Implementation
• Django 1.8 Compliant

• Python Package Installable

• Integration Through Configuration

Again, similar to the web API implementation, the Ajax APIs are Django 1.8 compliant apps[click], the apps are python package installable [click], the apps integration
with Open edX is through configuration [click], the API extends the Open edX URLs under a custom namespace [click], and in this integration use of Django’s CSRF token
and auth access controls are used for security. [click] Using the existing CSRF and auth support protects the API without additional development work. Which is
important because this API sits outside the firewall.

Ajax API Implementation
• Django 1.8 Compliant

• Python Package Installable

• Integration Through Configuration

• URL Mapping Extends Open edX URLs Under a /
gk/api/ Namespace

Again, similar to the web API implementation, the Ajax APIs are Django 1.8 compliant apps[click], the apps are python package installable [click], the apps integration
with Open edX is through configuration [click], the API extends the Open edX URLs under a custom namespace [click], and in this integration use of Django’s CSRF token
and auth access controls are used for security. [click] Using the existing CSRF and auth support protects the API without additional development work. Which is
important because this API sits outside the firewall.

Ajax API Implementation
• Django 1.8 Compliant

• Python Package Installable

• Integration Through Configuration

• URL Mapping Extends Open edX URLs Under a /
gk/api/ Namespace

• Uses CSRF Token and Django Auth for Access
Control

Again, similar to the web API implementation, the Ajax APIs are Django 1.8 compliant apps[click], the apps are python package installable [click], the apps integration
with Open edX is through configuration [click], the API extends the Open edX URLs under a custom namespace [click], and in this integration use of Django’s CSRF token
and auth access controls are used for security. [click] Using the existing CSRF and auth support protects the API without additional development work. Which is
important because this API sits outside the firewall.

Ajax API App

RDBMS

The Ajax API has a view layer [click] that manages the request response transaction, a controller layer [click] to perform the logic associated with the request method, and
an additional model layer [click] to retrieve mentor information and create records of messages sent to mentors [click].

The mentor data to drive this feature is entered and managed through the Django admin interface. Mentor information is entered per course through the Django admin.
Allowing non-developers to change the mentor data as needed through a role audited and password protected interface. Each message sent through the mentor relay is
logged via the creation of a MentorMessage instance which is persisted to the Open edX datastore.

This design allows GK to avoid making changes to the views that service the context to the templates of the Open edX pages, and incurring technical debt from changes
to these views as new versions of Open edX are adopted.

Ajax API App
URL Routing

RDBMS

The Ajax API has a view layer [click] that manages the request response transaction, a controller layer [click] to perform the logic associated with the request method, and
an additional model layer [click] to retrieve mentor information and create records of messages sent to mentors [click].

The mentor data to drive this feature is entered and managed through the Django admin interface. Mentor information is entered per course through the Django admin.
Allowing non-developers to change the mentor data as needed through a role audited and password protected interface. Each message sent through the mentor relay is
logged via the creation of a MentorMessage instance which is persisted to the Open edX datastore.

This design allows GK to avoid making changes to the views that service the context to the templates of the Open edX pages, and incurring technical debt from changes
to these views as new versions of Open edX are adopted.

Ajax API App
URL Routing

View

RDBMS

The Ajax API has a view layer [click] that manages the request response transaction, a controller layer [click] to perform the logic associated with the request method, and
an additional model layer [click] to retrieve mentor information and create records of messages sent to mentors [click].

The mentor data to drive this feature is entered and managed through the Django admin interface. Mentor information is entered per course through the Django admin.
Allowing non-developers to change the mentor data as needed through a role audited and password protected interface. Each message sent through the mentor relay is
logged via the creation of a MentorMessage instance which is persisted to the Open edX datastore.

This design allows GK to avoid making changes to the views that service the context to the templates of the Open edX pages, and incurring technical debt from changes
to these views as new versions of Open edX are adopted.

Ajax API App
URL Routing

View

App Logic/Controller

RDBMS

The Ajax API has a view layer [click] that manages the request response transaction, a controller layer [click] to perform the logic associated with the request method, and
an additional model layer [click] to retrieve mentor information and create records of messages sent to mentors [click].

The mentor data to drive this feature is entered and managed through the Django admin interface. Mentor information is entered per course through the Django admin.
Allowing non-developers to change the mentor data as needed through a role audited and password protected interface. Each message sent through the mentor relay is
logged via the creation of a MentorMessage instance which is persisted to the Open edX datastore.

This design allows GK to avoid making changes to the views that service the context to the templates of the Open edX pages, and incurring technical debt from changes
to these views as new versions of Open edX are adopted.

Ajax API App
URL Routing

View

App Logic/Controller

RDBMS

Model

The Ajax API has a view layer [click] that manages the request response transaction, a controller layer [click] to perform the logic associated with the request method, and
an additional model layer [click] to retrieve mentor information and create records of messages sent to mentors [click].

The mentor data to drive this feature is entered and managed through the Django admin interface. Mentor information is entered per course through the Django admin.
Allowing non-developers to change the mentor data as needed through a role audited and password protected interface. Each message sent through the mentor relay is
logged via the creation of a MentorMessage instance which is persisted to the Open edX datastore.

This design allows GK to avoid making changes to the views that service the context to the templates of the Open edX pages, and incurring technical debt from changes
to these views as new versions of Open edX are adopted.

Ajax API App
URL Routing

View

App Logic/Controller

RDBMS

Retrieve
and Create

Model

The Ajax API has a view layer [click] that manages the request response transaction, a controller layer [click] to perform the logic associated with the request method, and
an additional model layer [click] to retrieve mentor information and create records of messages sent to mentors [click].

The mentor data to drive this feature is entered and managed through the Django admin interface. Mentor information is entered per course through the Django admin.
Allowing non-developers to change the mentor data as needed through a role audited and password protected interface. Each message sent through the mentor relay is
logged via the creation of a MentorMessage instance which is persisted to the Open edX datastore.

This design allows GK to avoid making changes to the views that service the context to the templates of the Open edX pages, and incurring technical debt from changes
to these views as new versions of Open edX are adopted.

Lets take a look at how the Ajax API side-steps the need to maintain changes to Open edX views. [click] A page customized with the Ajax API is loaded by the client via a
synchronous request to Open edX’s view. [click] Custom javascript, on the customized page rendered by the synchronous request, accesses the Ajax API [click] to
update the page with additional data that was not part of the context used by the Open edX view to build the page during the synchronous request.

Open edx
URL Routing

Open edx Views

Open edx
Logic & Models

RDBMS

Lets take a look at how the Ajax API side-steps the need to maintain changes to Open edX views. [click] A page customized with the Ajax API is loaded by the client via a
synchronous request to Open edX’s view. [click] Custom javascript, on the customized page rendered by the synchronous request, accesses the Ajax API [click] to
update the page with additional data that was not part of the context used by the Open edX view to build the page during the synchronous request.

Open edx
URL Routing

Open edx Views

Open edx
Logic & Models

Synchronous

Page Request

RDBMS

Lets take a look at how the Ajax API side-steps the need to maintain changes to Open edX views. [click] A page customized with the Ajax API is loaded by the client via a
synchronous request to Open edX’s view. [click] Custom javascript, on the customized page rendered by the synchronous request, accesses the Ajax API [click] to
update the page with additional data that was not part of the context used by the Open edX view to build the page during the synchronous request.

Open edx
URL Routing

Open edx Views

Open edx
Logic & Models

Synchronous

Page Request
Ajax

Req

ue
st

Ajax API App
URL Routing

Ajax API Views

Ajax API
Logic & Models

RDBMS

Lets take a look at how the Ajax API side-steps the need to maintain changes to Open edX views. [click] A page customized with the Ajax API is loaded by the client via a
synchronous request to Open edX’s view. [click] Custom javascript, on the customized page rendered by the synchronous request, accesses the Ajax API [click] to
update the page with additional data that was not part of the context used by the Open edX view to build the page during the synchronous request.

Open edX Theme

With the ability to pull data from the server side through the Ajax API the template will need to be modified to access the data and render the new information. First, find
the template to edit in the Open edX source [click], second, add javascript to make the request to the Ajax API [click], third and finally add javascript to handle updates to
page DOM [click] received in the response. During these exchanges with the server side, the CSRF token is used to ensure that it is only the javascript from the page
created by the Open edX view that is making the request to the server.

Open edX Theme
• Find Template in

Theme to Edit

With the ability to pull data from the server side through the Ajax API the template will need to be modified to access the data and render the new information. First, find
the template to edit in the Open edX source [click], second, add javascript to make the request to the Ajax API [click], third and finally add javascript to handle updates to
page DOM [click] received in the response. During these exchanges with the server side, the CSRF token is used to ensure that it is only the javascript from the page
created by the Open edX view that is making the request to the server.

Open edX Theme
• Find Template in

Theme to Edit
• Add Javascript

Making Ajax Call to
the API

With the ability to pull data from the server side through the Ajax API the template will need to be modified to access the data and render the new information. First, find
the template to edit in the Open edX source [click], second, add javascript to make the request to the Ajax API [click], third and finally add javascript to handle updates to
page DOM [click] received in the response. During these exchanges with the server side, the CSRF token is used to ensure that it is only the javascript from the page
created by the Open edX view that is making the request to the server.

Open edX Theme
• Find Template in

Theme to Edit
• Add Javascript

Making Ajax Call to
the API

• Add Javascript to
Update the DOM

With the ability to pull data from the server side through the Ajax API the template will need to be modified to access the data and render the new information. First, find
the template to edit in the Open edX source [click], second, add javascript to make the request to the Ajax API [click], third and finally add javascript to handle updates to
page DOM [click] received in the response. During these exchanges with the server side, the CSRF token is used to ensure that it is only the javascript from the page
created by the Open edX view that is making the request to the server.

One key location in Open edX where we have made use of this technique ,to great success, is the My Courses page. We’ve added the ability to display more detailed
progress information with aid from IBL, and created the ability to add and remove courses from the My Course page based on business rules at Global Knowledge, such
as date based enrollment windows, and course enrollment cancelations.

One key location in Open edX where we have made use of this technique ,to great success, is the My Courses page. We’ve added the ability to display more detailed
progress information with aid from IBL, and created the ability to add and remove courses from the My Course page based on business rules at Global Knowledge, such
as date based enrollment windows, and course enrollment cancelations.

Another key integration at GK is single sign on. [click] Allowing users with accounts on other Global Knowledge systems to user their existing credentials to gain access
to our Open edX implementation.

Third Party Authentication
& Single Sign On

Another key integration at GK is single sign on. [click] Allowing users with accounts on other Global Knowledge systems to user their existing credentials to gain access
to our Open edX implementation.

Public Facing
Production
Open edX

Custom
xblocks

3rd Party
Auth

Login authentication authorization for Open edX at GK is delegated to an identity server. [click] When a user attempts to login to Open edX, that user is redirected to our
identity server and prompted to authorize with their Global Knowledge credentials. Once authenticated with identity server the user is redirected back to Open edX with
their user data, and link is created between Open edX and the Identity Server for that user’s account. [click]

Identity Server
Authentication

User
Records

Authorization
Single Sign On

OAuth2
OpenID

Public Facing
Production
Open edX

Custom
xblocks

3rd Party
Auth

Login authentication authorization for Open edX at GK is delegated to an identity server. [click] When a user attempts to login to Open edX, that user is redirected to our
identity server and prompted to authorize with their Global Knowledge credentials. Once authenticated with identity server the user is redirected back to Open edX with
their user data, and link is created between Open edX and the Identity Server for that user’s account. [click]

Identity Server
Authentication

User
Records

Authorization
Single Sign On

OAuth2
OpenID

Public Facing
Production
Open edX

Custom
xblocks

3rd Party
Auth

Login
Services

Login authentication authorization for Open edX at GK is delegated to an identity server. [click] When a user attempts to login to Open edX, that user is redirected to our
identity server and prompted to authorize with their Global Knowledge credentials. Once authenticated with identity server the user is redirected back to Open edX with
their user data, and link is created between Open edX and the Identity Server for that user’s account. [click]

Identity Server
Authentication

User
Records

Authorization
Single Sign On

OAuth2
OpenID

RDBMS

Public Facing
Production
Open edX

Custom
xblocks

3rd Party
Auth

Login
Services

User
Data

U
ser

D
ata

Login authentication authorization for Open edX at GK is delegated to an identity server. [click] When a user attempts to login to Open edX, that user is redirected to our
identity server and prompted to authorize with their Global Knowledge credentials. Once authenticated with identity server the user is redirected back to Open edX with
their user data, and link is created between Open edX and the Identity Server for that user’s account. [click]

Single Sign On

Global Knowledge’s Single-Sign-On implementation depends on two technologies that Open edX provides support for. Third party authorization via additional OAuth2
providers [click], and the transfer of data during third party authorization to create and link accounts using the Open ID standard for claims[click].

Single Sign On
• Open edX Third Party

Authentication for
Additional OAuth2
Providers

Global Knowledge’s Single-Sign-On implementation depends on two technologies that Open edX provides support for. Third party authorization via additional OAuth2
providers [click], and the transfer of data during third party authorization to create and link accounts using the Open ID standard for claims[click].

Single Sign On
• Open edX Third Party

Authentication for
Additional OAuth2
Providers

• Leverage the OpenID
Standard for
Transferring User Data
During Account
Linking and Auth

Global Knowledge’s Single-Sign-On implementation depends on two technologies that Open edX provides support for. Third party authorization via additional OAuth2
providers [click], and the transfer of data during third party authorization to create and link accounts using the Open ID standard for claims[click].

Not least of all is Global Knowledge’s use of custom xblocks for integration of Open edX with Global Knowledge’s learning assets. Open edX’s support for the standard
for portable learning units as xblocks, allows for these integrations. [click]

Custom xblocks

Not least of all is Global Knowledge’s use of custom xblocks for integration of Open edX with Global Knowledge’s learning assets. Open edX’s support for the standard
for portable learning units as xblocks, allows for these integrations. [click]

Custom xblocks

Public Facing
Production
Open edX

Custom
Labs

Vimeo
Video

Custom
Weblink

Custom
Matrix

OtherCustom
Sequence

The custom xblock implementations at Global Knowledge are; Vimeo video [click], custom labs [click], custom weblink [click], custom matrix [click], custom sequences.
The xblock standard also leaves the possibility for countless other integration as Global Knowledge continues to add and improve course content.

Custom xblocks
• Vimeo Video

Public Facing
Production
Open edX

Custom
Labs

Vimeo
Video

Custom
Weblink

Custom
Matrix

OtherCustom
Sequence

The custom xblock implementations at Global Knowledge are; Vimeo video [click], custom labs [click], custom weblink [click], custom matrix [click], custom sequences.
The xblock standard also leaves the possibility for countless other integration as Global Knowledge continues to add and improve course content.

Custom xblocks
• Vimeo Video

• Custom Labs Public Facing
Production
Open edX

Custom
Labs

Vimeo
Video

Custom
Weblink

Custom
Matrix

OtherCustom
Sequence

The custom xblock implementations at Global Knowledge are; Vimeo video [click], custom labs [click], custom weblink [click], custom matrix [click], custom sequences.
The xblock standard also leaves the possibility for countless other integration as Global Knowledge continues to add and improve course content.

Custom xblocks
• Vimeo Video

• Custom Labs

• Custom Weblink

Public Facing
Production
Open edX

Custom
Labs

Vimeo
Video

Custom
Weblink

Custom
Matrix

OtherCustom
Sequence

The custom xblock implementations at Global Knowledge are; Vimeo video [click], custom labs [click], custom weblink [click], custom matrix [click], custom sequences.
The xblock standard also leaves the possibility for countless other integration as Global Knowledge continues to add and improve course content.

Custom xblocks
• Vimeo Video

• Custom Labs

• Custom Weblink

• Custom Matrix

Public Facing
Production
Open edX

Custom
Labs

Vimeo
Video

Custom
Weblink

Custom
Matrix

OtherCustom
Sequence

The custom xblock implementations at Global Knowledge are; Vimeo video [click], custom labs [click], custom weblink [click], custom matrix [click], custom sequences.
The xblock standard also leaves the possibility for countless other integration as Global Knowledge continues to add and improve course content.

Custom xblocks
• Vimeo Video

• Custom Labs

• Custom Weblink

• Custom Matrix

• Custom Sequences

Public Facing
Production
Open edX

Custom
Labs

Vimeo
Video

Custom
Weblink

Custom
Matrix

OtherCustom
Sequence

The custom xblock implementations at Global Knowledge are; Vimeo video [click], custom labs [click], custom weblink [click], custom matrix [click], custom sequences.
The xblock standard also leaves the possibility for countless other integration as Global Knowledge continues to add and improve course content.

Custom xblocks
• Vimeo Video

• Custom Labs

• Custom Weblink

• Custom Matrix

• Custom Sequences

• Other

Public Facing
Production
Open edX

Custom
Labs

Vimeo
Video

Custom
Weblink

Custom
Matrix

OtherCustom
Sequence

The custom xblock implementations at Global Knowledge are; Vimeo video [click], custom labs [click], custom weblink [click], custom matrix [click], custom sequences.
The xblock standard also leaves the possibility for countless other integration as Global Knowledge continues to add and improve course content.

Questions
&

Comments

Thank you for your time and the opportunity to present here at Open edX 2018. I’ll now open up the session for questions and comments..

Additional Slides

RabbitMQ

MySQL

Web API

Relayed Request Managed
by Relay

Immediate Response
Acknowledging Request

Immediate Response
Acknowledging Request

Asynchronous
Relay

Between the back office and the private production instance of Open edX exists an Asynchronous Message Relay. The Asynchronous relay ensures a timely response to
the back office push of data to Open edX, allowing these back office systems to continue without blocking for a response. The asynchronous relay then manages the
final push of the data to Open edX, cycling the request through a queue and cash that leaves a record trail of the number of attempts needed to push the data, or the
final error state if the push was unsuccessful.

RabbitMQ

MySQL

Web API

Relayed Request Managed
by Relay

Immediate Response
Acknowledging Request

Immediate Response
Acknowledging Request

Asynchronous
RelayEvent Triggered Request

Migrates Records

Between the back office and the private production instance of Open edX exists an Asynchronous Message Relay. The Asynchronous relay ensures a timely response to
the back office push of data to Open edX, allowing these back office systems to continue without blocking for a response. The asynchronous relay then manages the
final push of the data to Open edX, cycling the request through a queue and cash that leaves a record trail of the number of attempts needed to push the data, or the
final error state if the push was unsuccessful.

RabbitMQ

MySQL

Web API

Relayed Request Managed
by Relay

Immediate Response
Acknowledging Request

Immediate Response
Acknowledging Request

Web
API

Asynchronous
RelayEvent Triggered Request

Migrates Records

Between the back office and the private production instance of Open edX exists an Asynchronous Message Relay. The Asynchronous relay ensures a timely response to
the back office push of data to Open edX, allowing these back office systems to continue without blocking for a response. The asynchronous relay then manages the
final push of the data to Open edX, cycling the request through a queue and cash that leaves a record trail of the number of attempts needed to push the data, or the
final error state if the push was unsuccessful.

Asynchronous Relay
Endpoint

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

PUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

PUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

PUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

PUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Immediate Response
with Success 201

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

PUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Immediate Response
with Success 201

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

PUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Immediate Response
with Success 201

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

PUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Immediate Response
with Success 201

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

Request
to Web API

on Open edXPUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Immediate Response
with Success 201

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

Success
201

Conflict
409

Forbidden
403

Request
to Web API

on Open edXPUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Immediate Response
with Success 201

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

Success
201

Conflict
409

Forbidden
403

Request
to Web API

on Open edXPUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Cache
Management

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Asynchronous Relay
EndpointEvent Triggered

Request Migrates
Records

Immediate Response
with Success 201

Immediate Response
with Conflict 409

Cached
Pop Cache, Replace
with New Request, add
to Queue

New
Cache New Record and
Place in Queue

Queued
To Prevent Race-Conditions
Queued Records are not
Popped but Pushed Back
Upstream for Later Processing

Success
201

Conflict
409

Forbidden
403

Request
to Web API

on Open edXPUT:/contacts/<contact_id>/enrollments/

• Queued
• Cached for
• Reprocessing
• Cached for
• Error

MySQL
Cache

Cache
Management

RabbitMQ
Queue

Cache
Management

Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.

Environment

Global Knowledges environment is heterogeneous, multiple operating systems, database management systems, programming languages, and environments.

Environment

Windows

Linux

Global Knowledges environment is heterogeneous, multiple operating systems, database management systems, programming languages, and environments.

Environment

SQLServer

MySQL

Windows

Linux

Global Knowledges environment is heterogeneous, multiple operating systems, database management systems, programming languages, and environments.

Environment

SQLServer

MySQL
.NET

Python

Windows

Linux

Global Knowledges environment is heterogeneous, multiple operating systems, database management systems, programming languages, and environments.

Environment

SQLServer

MySQL
.NET

Python

Windows

Linux

cloud

on premise

Global Knowledges environment is heterogeneous, multiple operating systems, database management systems, programming languages, and environments.

Open edX RDBMS

Web
API

Private Facing
Production
Instance

The arriving request enters the private facing production instance of Open edX through a custom Web API that places incoming records into a set of landing tables before
creating the Open edX student accounts and enrollments.

Open edX RDBMS

Web
API

Private Facing
Production
Instance

Event Triggered Request
Migrates Records

The arriving request enters the private facing production instance of Open edX through a custom Web API that places incoming records into a set of landing tables before
creating the Open edX student accounts and enrollments.

Data Warehouse

Back Office
Systems

Customer Relations
Management

Identity Server

Back office systems are upstream of Open edX, meaning user data flows from the back office to Open edX, entry of new or the edit of an existing user enrollment in the
back office, triggers an [event] that pushes a user enrollment record to Open edX

Event Triggered Request
Migrates Records

Data Warehouse

Back Office
Systems

Customer Relations
Management

Identity Server

Event

Back office systems are upstream of Open edX, meaning user data flows from the back office to Open edX, entry of new or the edit of an existing user enrollment in the
back office, triggers an [event] that pushes a user enrollment record to Open edX

