
My name is Jason Goodell, I’m a developer with Global Knowledge and my expertise is in server side development in Python. Unfortunately Sam Boyarsky is unable to 
join us today at Open edX. This talk is going to cover the integration of Open edX into an enterprise systems, specifically the Global Knowledge enterprise environment. 
Instead of talking in detail about development specifics, this talk will concentrate on architecture and design of the extensions to Open edX created to integrate Open 
edX. This talk is also a review of Global Knowledge’s integration approach, warts and all. After deciding on this topic, and making the decision to not delve deeply into 
implementation specifics I realized there is still a lot of content to cover. So lets get started.
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First I’d like to take a moment to talk about the graphics used in this presentation. So that we all know what we are looking at. [click] Green objects are used to indicate 
requests and responses. [click] Solid blue objects are used to indicate peripheral systems to Open edX in the Global Knowledge environment. [click] Blue fade objects are 
used to indicate Open edX instances. [click] Red objects are used to indicate data systems. [click] Turquoise objects are used to indicate additions to Open edX such as 
Django apps and APIs. [click] Finally, grey objects are miscellaneous other entities in the Global Knowledge environment.
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To appreciate the approach to integrating Open edX at Global Knowledge, there are key characteristics to our approach to understand. [click] Open edX is a delegate 
system to Global Knowledge’s existing back office processes and systems. [click] User and enrollment records migrate to Open edX from Global Knowledge’s back office 
systems. For Global Knowledge user’s and enrollments will not be created in Open edX. Instead these records will be created in Global Knowledge’s back office systems. 
[click] Integrations are designed to mitigating risk from changes to the Open edX platform. We create additional functionality by adding Django apps as plugins. With our 
plugins depending on Open edX core code instead of modifying Open edX. [click] Global Knowledge records are pushed to Open edX through custom web APIs, and 
placed on Open edX’s relational database management system in a set of landing tables. Global Knowledge’s existing environment of back office systems, which 
manage purchasing, student account management and course enrollment are the systems of truth for Global Knowledge’s business. These back office systems not only 
support self-paced courses within Open edX, but also support Global Knowledge’s other course modalities; instructor lead and virtual instructor lead.
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Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s 
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user 
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and 
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open 
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production 
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records, 
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private 
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.
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Open edX integration at Global Knowledge happens behind the firewall. [click] The MyGK web application ties together the user experience across Global Knowledge’s 
web applications, and is the gateway for users at Global Knowledge. [click] Data flows bidirectionally between MyGK and the back office systems, passing user 
information and enrollment data as user interactions and back office processes create change in those records. [click] An Identity Server provides authentication and 
authorization services [click] for Global Knowledge applications [click], including MyGK and Open edX. The Open edX authentication integration was achieved via Open 
edX’s third party authentication integration. [click] Open edX is deployed as a distributed system at Global Knowledge, with both public and private facing production 
instances. These separate Open edX instances share services such as data systems. Events in the back office, initiated by updates to user and enrollment records, 
trigger the migration [click] of records from Global Knowledge’s back office to Open edX. The public facing Open edX instance handles user traffic, while the private 
facing Open edX instance handles internal Global Knowledge traffic, including traffic to the web API, through which the migrated records are received.



I’d like to start with the migration of user and enrollment records into Open edX. Open edX is not a system of record at Global Knowledge. Creation of users, courses and 
enrollments happen outside of Open edX and are migrated and imported into Open edX. The necessary data is migrated from other systems into Open edX through APIs. 
User and enrollment data is migrated thru the API, while course creation and importing is a separate set of systems and processes that are outside the scope of this talk.
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agreement between the different teams responsible for the different Global Knowledge systems involved. [click] The record is coarse by intention, containing both 
student/contact data and course enrollment data in the same JSON object definition. [click] The record is complete in its representation of the state of the student and 
enrollment resource, [click] containing all information to create, update or replace a record in the landing tables on Open edX.
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this student/contact, either returning the record or a 404 to indicate the record does not exist. The book markable URLs improve log entries by including the ID in the time 
stamped logs, indicating when a particular record was migrated from Global Knowledge’s back office to Open edX. [click] The API constrains the accepted resources to 
the JSON content type. Rejecting requests formatted in other types; XML, form data, etc. [click] The API makes idiomatic use of the methods and status’ available 
through the HTTP protocol. Idiomatic use of the HTTP protocol removes the need to define additional actions or error indicators in the request or response bodies.
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API will is implemented as a Django 1.8 compliant app.[click] The API uses the Django ReST Framework, standardizing the view implementation with existing views in 
Open edX. [click] The Web API Django app was designed and developed to be Python package installable. Django apps are Python packages, and can be installed by 
Python packaging tools like setuptools. [click] The API app is integrated through configuration with Open edX, no modifications to Open edX code are required, other 
than additions to settings and configuration files. [click] The Web API URLs occupy a new namespace separate from Open edX URLs, avoiding URL collisions with 
existing Open edX URLs. [click] The API has dependencies on core Open edX libraries for creating and updating edX native users and enrollments. Orchestrating rather 
than modifying existing Open edX code to meet Global Knowledge’s business requirements.
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With an understanding of the what and where with regard to , lets look at how a record is received at the Web API. Records arriving at the Web API endpoint are validated 
[click] and compared to existing resource records in the landing tables. The correct HTTP status code is returned by the Web API, indicating the status of the request to 
the upstream system, 20X’s for success [click] or 40X’s [click] for errors. It is possible that for a 409, part of the record was been written to the landing tables successfully 
[click], the body in the response, details what part of the record caused the conflict. A 403 will not be processed at all, and the response body details what attribute of the 
resource is causing the fatal error.
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Creating & Updating 
Open edX Students & 

Enrollments

With the migration of the resources from the Global Knowledge back office to the landing tables in Open edX complete, we’ll turn our attention to how we integrated the 
creation of the native student and enrollment records in Open edX.



Web API App

The Web API as a Django web app, contains URL routing and view components [click], with Global Knowledge business logic [click] encapsulated away from web 
request and response management. The Open edX core libraries [click] are a dependency at the view and controller level. The processing or attempted processing of the 
resource determines the response status and how the upstream services will manage the response. The landing tables create a record on Open edX for implementing 
custom business logic for Global Knowledge, but Open edX native records still need to be created and updated in Open edX’s tables. The controllers orchestrate the 
creation of the Open edX native user and enrollment records.
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With Open edX receiving and processing student and enrollment information, the necessary data for implementing additional integrations with Global Knowledge are now 
available on Open edX. Lets look at some additional Open edX integrations performed at Global Knowledge.
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For two Global Knowledge features we realized that we needed to extend the functionality of existing Open edX pages. We found the best way to go about doing this 
was to add the necessary data to the pages by adding Javascript to the edX theming templates to make Ajax calls to custom web APIs. [click]



APIs for Ajax 
Functionality

For two Global Knowledge features we realized that we needed to extend the functionality of existing Open edX pages. We found the best way to go about doing this 
was to add the necessary data to the pages by adding Javascript to the edX theming templates to make Ajax calls to custom web APIs. [click]



Ajax API Definition

Similar to the web API for users and enrollments we have book markable URLs [click], request data is constrained to JSON [click], and we made idiomatic use of HTTP 
methods and status codes [click]. A theme is emerging, the extensibility’s available through the development of Django apps for the server, and the ability to add 
functionality on the client side with Open edX’s theming drive a lot of Open edX integrations at Global Knowledge.
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Similar to the web API for users and enrollments we have book markable URLs [click], request data is constrained to JSON [click], and we made idiomatic use of HTTP 
methods and status codes [click]. A theme is emerging, the extensibility’s available through the development of Django apps for the server, and the ability to add 
functionality on the client side with Open edX’s theming drive a lot of Open edX integrations at Global Knowledge.



Ajax API Implementation

Again, similar to the web API implementation, the Ajax APIs are Django 1.8 compliant apps[click], the apps are python package installable [click], the apps integration 
with Open edX is through configuration [click], the API extends the Open edX URLs under a custom namespace [click], and in this integration use of Django’s CSRF token 
and auth access controls are used for security. [click] Using the existing CSRF and auth support protects the API without additional development work. Which is 
important because this API sits outside the firewall.
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Again, similar to the web API implementation, the Ajax APIs are Django 1.8 compliant apps[click], the apps are python package installable [click], the apps integration 
with Open edX is through configuration [click], the API extends the Open edX URLs under a custom namespace [click], and in this integration use of Django’s CSRF token 
and auth access controls are used for security. [click] Using the existing CSRF and auth support protects the API without additional development work. Which is 
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Ajax API App

RDBMS

The Ajax API has a view layer [click] that manages the request response transaction, a controller layer [click] to perform the logic associated with the request method, and 
an additional model layer [click] to retrieve mentor information and create records of messages sent to mentors [click]. 


The mentor data to drive this feature is entered and managed through the Django admin interface. Mentor information is entered per course through the Django admin. 
Allowing non-developers to change the mentor data as needed through a role audited and password protected interface. Each message sent through the mentor relay is 
logged via the creation of a MentorMessage instance which is persisted to the Open edX datastore.


This design allows GK to avoid making changes to the views that service the context to the templates of the Open edX pages, and incurring technical debt from changes 
to these views as new versions of Open edX are adopted.
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Lets take a look at how the Ajax API side-steps the need to maintain changes to Open edX views. [click] A page customized with the Ajax API is loaded by the client via a 
synchronous request to Open edX’s view. [click] Custom javascript, on the customized page rendered by the synchronous request, accesses the Ajax API [click] to 
update the page with additional data that was not part of the context used by the Open edX view to build the page during the synchronous request.



Open edx 
URL Routing

Open edx Views

Open edx 
Logic & Models

RDBMS

Lets take a look at how the Ajax API side-steps the need to maintain changes to Open edX views. [click] A page customized with the Ajax API is loaded by the client via a 
synchronous request to Open edX’s view. [click] Custom javascript, on the customized page rendered by the synchronous request, accesses the Ajax API [click] to 
update the page with additional data that was not part of the context used by the Open edX view to build the page during the synchronous request.



Open edx 
URL Routing

Open edx Views

Open edx 
Logic & Models

Synchronous 

Page Request

RDBMS

Lets take a look at how the Ajax API side-steps the need to maintain changes to Open edX views. [click] A page customized with the Ajax API is loaded by the client via a 
synchronous request to Open edX’s view. [click] Custom javascript, on the customized page rendered by the synchronous request, accesses the Ajax API [click] to 
update the page with additional data that was not part of the context used by the Open edX view to build the page during the synchronous request.



Open edx 
URL Routing

Open edx Views

Open edx 
Logic & Models

Synchronous 

Page Request
Ajax

 
Req

ue
st

Ajax API App 
URL Routing

Ajax API Views

Ajax API 
Logic & Models

RDBMS

Lets take a look at how the Ajax API side-steps the need to maintain changes to Open edX views. [click] A page customized with the Ajax API is loaded by the client via a 
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With the ability to pull data from the server side through the Ajax API the template will need to be modified to access the data and render the new information. First, find 
the template to edit in the Open edX source [click], second, add javascript to make the request to the Ajax API [click], third and finally add javascript to handle updates to 
page DOM [click] received in the response. During these exchanges with the server side, the CSRF token is used to ensure that it is only the javascript from the page 
created by the Open edX view that is making the request to the server.
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One key location in Open edX where we have made use of this technique ,to great success, is the My Courses page. We’ve added the ability to display more detailed 
progress information with aid from IBL, and created the ability to add and remove courses from the My Course page based on business rules at Global Knowledge, such 
as date based enrollment windows, and course enrollment cancelations.
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to our Open edX implementation.
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Global Knowledge’s Single-Sign-On implementation depends on two technologies that Open edX provides support for. Third party authorization via additional OAuth2 
providers [click], and the transfer of data during third party authorization to create and link accounts using the Open ID standard for claims[click].
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The custom xblock implementations at Global Knowledge are; Vimeo video [click], custom labs [click], custom weblink [click], custom matrix [click], custom sequences. 
The xblock standard also leaves the possibility for countless other integration as Global Knowledge continues to add and improve course content.
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Thank you for your time and the opportunity to present here at Open edX 2018. I’ll now open up the session for questions and comments..
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Between the back office and the private production instance of Open edX exists an Asynchronous Message Relay. The Asynchronous relay ensures a timely response to 
the back office push of data to Open edX, allowing these back office systems to continue without blocking for a response. The asynchronous relay then manages the 
final push of the data to Open edX, cycling the request through a queue and cash that leaves a record trail of the number of attempts needed to push the data, or the 
final error state if the push was unsuccessful.
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Taking a closer look at the asynchronous relay. The relay manages the complexity of incoming and outgoing requests based on the state of any previously cached 
request for a specific contact ID. The contact ID request is managed with a MySQL Cache that keeps a copy of each request. The possible states of a request in the 
cache are; queued for request to Open edX, cached for reprocessing because of a non-fatal error (409 response from edX), and cached for a fatal error (403 response 
from edX). This relay detail could be the subject of a talk on it’s own, but is only here for context, and will likely spur questions at the end.
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The arriving request enters the private facing production instance of Open edX through a custom Web API that places incoming records into a set of landing tables before 
creating the Open edX student accounts and enrollments.
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Back office systems are upstream of Open edX, meaning user data flows from the back office to Open edX, entry of new or the edit of an existing user enrollment in the 
back office, triggers an [event] that pushes a user enrollment record to Open edX
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