Openly Deploying Open edX at
MIT Open Learning

How We Use Open Source, Immutable Infrastructure for Running
MITx Residential

Tobias Macey

DevOps Manager and Team Lead
@ MIT Open Learning

openlearning.mit.edu

@TobiasMacey

github.com/blarghmatey

tmacey@mit.edu

Host of:

Podcast.__init

Data Engineering Podcast

https://twitter.com/tobiasmacey?lang=en
https://github.com/blarghmatey
mailto:tmacey@mit.edu
https://www.podcastinit.com/
https://www.dataengineeringpodcast.com/

Definition Time
Immutable Infrastructure: When you destroy and rebuild a server instead of
updating it in place

Open Source Infrastructure: Releasing the code you use for production as open
source for public reference (I gave a talk about this if you're curious)

Configuration Drift: When a server doesn't match desired state because of
multiple configuration updates/deployments

https://www.youtube.com/watch?v=VRSQV29VHuA

MITx Residential By The Numbers

MITx Residential is the online course platform for MIT students
30 - 50 courses each semester

Used by >90 MIT faculty and instructors

Used by >4000 undergraduate students in MIT classes

91% of undergraduates have used the platform for coursework

The Cast Of Characters

e SaltStack for everything
o Cloud provisioning
o Configuration management
o Reactive automation
e Vault for secrets
o Integrated with Saltstack
o Dynamic credentials
e Consul for service discovery
o DNS interface for ease of implementation

e Ansible for edX app installation
o Reduces maintenance burden

What Is
SaltStack?

And Why We Use It

It's an automation framework with
batteries included.

| introduced it at MIT Open Learning
because:

It's modular and extensible
Scales from one server to
multiple data centers
Event driven automation

The Layers

e Create VPC and S3 buckets

The Layers

e Create VPC and S3 buckets
e Deploy Consul cluster for
service discovery (via DNS)

The Layers

Create VPC and S3 buckets
Deploy Consul cluster for
service discovery (via DNS)

e Create RDS DB, EFS share for
NFS, Memcached Elasticache
cluster

- WD
Course Assets m
Multi-AZ
Replication
f—

S

The Layers

Create VPC and S3 buckets
Deploy Consul cluster for
service discovery (via DNS)

e Create RDS DB, EFS share for
NFS, Memcached Elasticache
cluster

e Deploy RabbitMQ, MongoDB,
Elasticsearch clusters on EC2

EE - W5

Course Assets

-
A

Multi-AZ
Replication

o
S

¥ Y

The Layers
Danco__ EENEEEM «————Poll For Xaueue
e Create VPC and S3 buckets X
[]

Celery Tasks \

Deploy Consul cluster for
service discovery (via DNS)

T 8| -
e Create RDS DB, EFS share for | S '\I
NFS, Memcached Elasticache T 9 P
cluster e
e Deploy RabbitMQ, MongoDB,

Elasticsearch clusters on EC2
Contentstore

e Deploy App, Worker, and e S | G
Xqueue-Watcher instances .’3<~—' _,a) %

Modulestore

Course Assets

Multi-AZ
Replication

o
S

¥ Y

The Layers / ‘ l @ ¢

C
Create VPC and S3 buckets P \x " P
Deploy Consul cluster for I '
B

service discovery (via DNS)

[]
BN Eaac
e Create RDS DB, EFS share for | S '\I
NFS, Memcached Elasticache T 9 g
cluster E
e Deploy RabbitMQ, MongoDB, » X
Modulestore

Elasticsearch clusters on EC2 Moduest
e Deploy App, Worker, and gumiomm, _ GltLogs SO o

9 mongo Forum Posts

Xqueue-Watcher instances .’3"—' »ﬁ -~ ﬁ
e Deploy ELB and attach app Course Assets
instances e

Replication

oo
S

The Architecture

Stateless Apps ==
Easier Deployments

Celery Tasks

" -

Celery Tasks

Poll For Xqueue
Submnssnons

Modulestore
Contentstore
Git Logs
0 0ngo Forum Posts

To0

- //w

Course Assets

“Forum ndexl

Multi-AZ

Rephcanon’Ej

Deploying

Provision bare servers
Execute Ansible playbooks
Snapshot as AMIs

S

Provision Instances

Ng

Configure Instances

CE—

HH

Snapshot AMI

HH

N A

Deploying

Provision from AMI snapshots
Update Configurations
Attach to load balancer

)

HH

Deploy From
Snapshots

HH

Be

Update Configuration

Attach to ELB

Version Upgrades

e Production data backed up and restored to QA environment
e Current production version runs alongside next target version

e Shared services, logically separated
o RabbitMQ - separate vhosts
o MySQL - separate schemas/databases
o MongoDB - separate databases
o Memcached - separate clusters

e Configuration files largely shared

The Code

e Ansible vars managed by SaltStack
o https://qithub.com/mitodl/salt-ops/tree/master/pillar/edx

e edX applications installed via Ansible playbooks
o https://qithub.com/mitodl/salt-ops/blob/master/salt/edx/run_ansible.sls

e Infrastructure components built with corresponding Salt formulas
https://github.com/mitodl/rabbitmg-formula
https://qithub.com/mitodl/elasticsearch-formula
https://qithub.com/mitodl/consul-formula
https://github.com/mitodl/mongodb-formula

@)
(@)
(@)
(@)

https://github.com/mitodl/salt-ops/tree/master/pillar/edx
https://github.com/mitodl/salt-ops/blob/master/salt/edx/run_ansible.sls
https://github.com/mitodl/rabbitmq-formula
https://github.com/mitodl/elasticsearch-formula
https://github.com/mitodl/consul-formula
https://github.com/mitodl/mongodb-formula

Where We Were

Long-lived instances, updated in place
Unreliable, unpredictable, slow deployments
Limited scalability

Error prone upgrade path

Where We Are Now

Stable, scalable infrastructure

Stateless, immutable application instances

Multi-version testing environment for smooth upgrade path
Modular configuration for customizing edX deployments
Fast, reliable, and safe deployments for security patches, etc.

Where We Are Going Next

Autoscaling

Picking apart services more

Rewrite Ansible roles as Salt formulas

Reserved instances

Replace ELB Classic with more flexible load balancing

More detailed monitoring (metrics, performance data, memory profiling,
better log aggregation, etc.)

e More comprehensive integration testing during deployments

Questions?

