
Openly Deploying Open edX at
MIT Open Learning
How We Use Open Source, Immutable Infrastructure for Running
MITx Residential

Tobias Macey
DevOps Manager and Team Lead

@ MIT Open Learning

openlearning.mit.edu

@TobiasMacey

github.com/blarghmatey

tmacey@mit.edu

Host of:

Podcast.__init__

Data Engineering Podcast

https://twitter.com/tobiasmacey?lang=en
https://github.com/blarghmatey
mailto:tmacey@mit.edu
https://www.podcastinit.com/
https://www.dataengineeringpodcast.com/

Immutable Infrastructure: When you destroy and rebuild a server instead of
updating it in place

Open Source Infrastructure: Releasing the code you use for production as open
source for public reference (I gave a talk about this if you're curious)

Configuration Drift: When a server doesn't match desired state because of
multiple configuration updates/deployments

Definition Time

https://www.youtube.com/watch?v=VRSQV29VHuA

MITx Residential By The Numbers

● MITx Residential is the online course platform for MIT students
● 30 - 50 courses each semester
● Used by >90 MIT faculty and instructors
● Used by >4000 undergraduate students in MIT classes
● 91% of undergraduates have used the platform for coursework

The Cast Of Characters

● SaltStack for everything
○ Cloud provisioning
○ Configuration management
○ Reactive automation

● Vault for secrets
○ Integrated with Saltstack
○ Dynamic credentials

● Consul for service discovery
○ DNS interface for ease of implementation

● Ansible for edX app installation
○ Reduces maintenance burden

What Is
SaltStack?
And Why We Use It

It's an automation framework with
batteries included.

I introduced it at MIT Open Learning
because:

● It's modular and extensible
● Scales from one server to

multiple data centers
● Event driven automation

The Layers

● Create VPC and S3 buckets

The Layers

● Create VPC and S3 buckets
● Deploy Consul cluster for

service discovery (via DNS)

The Layers

● Create VPC and S3 buckets
● Deploy Consul cluster for

service discovery (via DNS)
● Create RDS DB, EFS share for

NFS, Memcached Elasticache
cluster

The Layers

● Create VPC and S3 buckets
● Deploy Consul cluster for

service discovery (via DNS)
● Create RDS DB, EFS share for

NFS, Memcached Elasticache
cluster

● Deploy RabbitMQ, MongoDB,
Elasticsearch clusters on EC2

The Layers

● Create VPC and S3 buckets
● Deploy Consul cluster for

service discovery (via DNS)
● Create RDS DB, EFS share for

NFS, Memcached Elasticache
cluster

● Deploy RabbitMQ, MongoDB,
Elasticsearch clusters on EC2

● Deploy App, Worker, and
Xqueue-Watcher instances

The Layers

● Create VPC and S3 buckets
● Deploy Consul cluster for

service discovery (via DNS)
● Create RDS DB, EFS share for

NFS, Memcached Elasticache
cluster

● Deploy RabbitMQ, MongoDB,
Elasticsearch clusters on EC2

● Deploy App, Worker, and
Xqueue-Watcher instances

● Deploy ELB and attach app
instances

The Architecture

Stateless Apps ==
Easier Deployments

Deploying

● Provision bare servers
● Execute Ansible playbooks
● Snapshot as AMIs

Deploying

● Provision from AMI snapshots
● Update Configurations
● Attach to load balancer

Version Upgrades

● Production data backed up and restored to QA environment
● Current production version runs alongside next target version
● Shared services, logically separated

○ RabbitMQ - separate vhosts
○ MySQL - separate schemas/databases
○ MongoDB - separate databases
○ Memcached - separate clusters

● Configuration files largely shared

The Code

● Ansible vars managed by SaltStack
○ https://github.com/mitodl/salt-ops/tree/master/pillar/edx

● edX applications installed via Ansible playbooks
○ https://github.com/mitodl/salt-ops/blob/master/salt/edx/run_ansible.sls

● Infrastructure components built with corresponding Salt formulas
○ https://github.com/mitodl/rabbitmq-formula
○ https://github.com/mitodl/elasticsearch-formula
○ https://github.com/mitodl/consul-formula
○ https://github.com/mitodl/mongodb-formula

https://github.com/mitodl/salt-ops/tree/master/pillar/edx
https://github.com/mitodl/salt-ops/blob/master/salt/edx/run_ansible.sls
https://github.com/mitodl/rabbitmq-formula
https://github.com/mitodl/elasticsearch-formula
https://github.com/mitodl/consul-formula
https://github.com/mitodl/mongodb-formula

Where We Were

● Long-lived instances, updated in place
● Unreliable, unpredictable, slow deployments
● Limited scalability
● Error prone upgrade path

Where We Are Now

● Stable, scalable infrastructure
● Stateless, immutable application instances
● Multi-version testing environment for smooth upgrade path
● Modular configuration for customizing edX deployments
● Fast, reliable, and safe deployments for security patches, etc.

Where We Are Going Next

● Autoscaling
● Picking apart services more
● Rewrite Ansible roles as Salt formulas
● Reserved instances
● Replace ELB Classic with more flexible load balancing
● More detailed monitoring (metrics, performance data, memory profiling,

better log aggregation, etc.)
● More comprehensive integration testing during deployments

Questions?

