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Where did our work start from?

Course design and delivery

How can we compare TokyoTechX MOOCs with others?

How should we structure the content?
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Where did our work start from?

Course design and delivery

How can we compare TokyoTechX MOOCs with others?

How should we structure the content?
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“Topic is very interesting, but “l want to learn more

content is hard to understand ...” on this topic ...”
“ Learner experience

3 Tokyo Tech



Goal of analysis

To identify course design, delivery and content related elements that might

improve MOOC quality and learner experience:
@ Define metrics for comparing MOOCs' content
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Outline

@ Current state of MOOC analysis using NLP
@ Tokyo Tech edX MOOC Crawler

@ Statistical analysis of crawled courses

© NLP analysis using document embeddings
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Research in MOOCs

Learner activity

Course content
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¢ Dropout prediction
¢ Adaptive real-time support
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¢ Content classification
¢ Content matching
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NLP research in MOOCs

Natural Language Processing (NLP) is a branch of computer science and
artificial intelligence that allows computers understand and interpret human

language.
¢ Dropout prediction
Learner activity ¢ Adaptive real-time support
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Why NLP techniques are useful?

Word embedding

One hot vector representation
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Why NLP techniques are useful?
Word embedding

One hot vector representation
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Advantages:

@ Model captures semantic similarity
@ Model is fast to train

@ Human effort for training is minimal (unsupervised learning)



Analysis overview

MOOC crawler Statistical analysis NLP analysis
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Design and delivery
elements

e Course structure * Readability

e Lecture style * Section coherence
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Outline

MOOC crawler
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Tokyo Tech edX MOQOC Crawler

@ Python-based tool developed for mining text data of edX MOOCs on a
user's dashboard
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Output examples of edX-crawler

Meta data for text component

text_block_01: {
content: "Welcome to the Autophagy MOOC!
section: "01-Introduction",
subsection: "000-Welcome__Course_Navigation",
unit_idx: "seq_contents_0.txt",
word_count: 213

Meta data for video component

video_block_01:{
section: "02-Week_1._Introduction_to_the_solid_Earth",
subsection: "Introduction”,
transcript_en: "The name of this course is “Introduction to ...",
unit_idx: "seq_contents_0",
video_duration: 249,
youtube_url: https://youtu.be/35g4IVKXx8I
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Tokyo Tech edX MOQOC Crawler

Check out our edX crawler tool available on gitHub:
https://github.com/TokyoTechX/web-crawler

We are looking forward for your feedback!

14

Tokyo Tech


https://github.com/TokyoTechX/web-crawler

Outline

Statistical analysis
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edX MOOCs vs TokyoTechX MOOQOCs

308 edX MOOCs TokyoTechX MOQOCs

Language: English @ 2 courses in English

Availability: Archived o Autophagy

Subject filters: o Deep Earth Science
@ Business & Management @ 2 courses in Japanese & English
@ Computer Science e Intro to Electrical Engineering
~ HuiEiies o Modern Japanese Architecture
o Engineering @ 1 course in Japanese
o Math e Science and Engineering Ethics )
@ Physics
°

Social Sciences )
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Distribution of subjects
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Institutions

Distribution of

in total

Institutions

e 78

)
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e MIT, Microsoft, Harvard, Delft, IIMB

itutes (33

@ Top b5 inst

Tokyo Tech ranks 11th
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How is MOOC content structured?

{0
] 5 5 5 5

Text
@ We focused on 3 types of components Video
@ Each course has different learning sequence
@ How much content is in each component? Assessment
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Course content clustering - word count based

@ About 75% of all courses falls into 3 clusters, which were computed using

k-means clustering [2]

@ 2 TokyoTechX courses in 1st cluster (Autophagy, Japanese Architecture)

video
B text
quiz 105 courses 68 courses 56 courses
5%5% 18% 6% 9%
35%
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90% 76%

e
video : text 18 42 16
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Video lecture duration

21

On average, video duration range is 3.3 - 9.1 minutes
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Speaking rate of video lecturers

4
35 Speaking rate
Course
(words/sec)
8 3
3
] Deep Earth 18
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Figure: Speaking rate

e Fastest speaking lecturer in Introduction to Public Speaking

(4.1 words/sec)
o Slowest speaking lecturer in More Fun with Prime Numbers

22 (1.03 words/sec) Tokyo Tech



Outline

NLP analysis

AL
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Vector representation of documents

@ We need a measure to compare courses with each other
@ Doc2vec [3] allows to represent text document as vectors and maps similar
documents closer in a vector space

Input Output
course data course vectors
Model Java Programming

Java Programming

-> Python for Data Science

similarity=cos(0 )= _A-B _

llAlliBI
Python for Data Science
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Course classification using document embeddings

@ How accurately can we classify courses into categories/subjects?
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ClaSSIflcatlon resu |tS Normalized confusion matrix

o Linear classifier with SGD
training

True label

o Accuracy is 80%

&+
&
)
Predicted label

o Can we capture similarity between course sections?

o How can we apply it to extend MOOCs readability
analysis?
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Section comparisons using embeddings

Pairwise comparison
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Pairwise cosine similarity vs Linear cosine similarity
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Readability and content flow of the course

Measure content flow and readability using two parameters:
@ Flesch-Kincaid reading ease [4]

total words

total syllabl
score = 206.835 — 1.015 total words —84.6 lotal syllables
total sentences

Very difficult Difficult Plain English Easy Very easy
Graduate College 8th grade 5th grade
L 1 L L I L i i 1 i ]
I 1 T T T 1 I v 1 v 1
0 10 20 30 40 50 60 70 80 90 100

Reading Ease
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Readability and content flow of the course

Measure content flow and readability using two parameters:
o Flesch-Kincaid reading ease
@ Cosine similarity between sections

Intro to Deep Earth Science

.-.-0—0—-—0-.-.

64 .
R - readability score —

=>0.5
Link - cosine similarity E—
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Readability and content flow of the course

Autophagy
e @ & 9
52 54

Modern Japanese Architecture

Geeece..a.

60 29
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Readability and content flow of the course

Autophagy Readability score is 29

(Graduate Level)

. . . . We would appreciate you

52 54 completing the survey below
to provide the course team
with further information.

Modern Japanese Architecture

Geeecea-.

60 29

1
=
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Application

e Provide a feedback on the content at the development stage
Identifying low readability score sections

o Efficient learning
Finding similar section with higher readability score using document vectors

64 45 65

50 72
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Implications

@ Serial MOOCs creation process: Develop, Run & Analysis
@ Analysis can be done during Develop stage

Analysis
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Conclusion

The purpose of analysis was to identify features for comparing Tokyo Tech
MOOCs with other MOOCs.

We learned:
@ Most of the edX MOOCs are video-based

@ Readability analysis can be useful for developing cohesive and
learner-friendly content

@ Combination of the MOOC features can be applied to predict course
popularity
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Future work

@ Continue work on MOOC evaluation and data analysis
Present at JSET conference in Japan in September 2018

@ Welcome collaborations on MOOC content analysis

@ See Github for our tools:
e https://github.com/TokyoTechX
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