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Where did our work start from?
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Where did our work start from?
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Goal of analysis

To identify course design, delivery and content related elements that might
improve MOOC quality and learner experience:

Define metrics for comparing MOOCs’ content
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3 Statistical analysis of crawled courses
4 NLP analysis using document embeddings
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Research in MOOCs
[1]
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NLP research in MOOCs
Natural Language Processing (NLP) is a branch of computer science and
artificial intelligence that allows computers understand and interpret human
language.
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Why NLP techniques are useful?

Word embedding
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Why NLP techniques are useful?
Word embedding

Advantages:

Model captures semantic similarity

Model is fast to train

Human effort for training is minimal (unsupervised learning)
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Analysis overview
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Outline
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Tokyo Tech edX MOOC Crawler

Python-based tool developed for mining text data of edX MOOCs on a
user’s dashboard
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Output examples of edX-crawler
Meta data for text component

Meta data for video component

13



Tokyo Tech edX MOOC Crawler

Check out our edX crawler tool available on gitHub:
https://github.com/TokyoTechX/web-crawler

We are looking forward for your feedback!
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edX MOOCs vs TokyoTechX MOOCs

308 edX MOOCs

Language: English
Availability: Archived
Subject filters:

Business & Management

Computer Science

Humanities

Engineering

Math

Physics

Social Sciences

TokyoTechX MOOCs

2 courses in English

Autophagy
Deep Earth Science

2 courses in Japanese & English

Intro to Electrical Engineering
Modern Japanese Architecture

1 course in Japanese

Science and Engineering Ethics
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Distribution of subjects
28 subjects in total
Top 5 subjects (63%):

Computer science, Business and Management, Engineering, Social science,
Math
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Distribution of institutions
78 institutions in total
Top 5 institutes (33%):

MIT, Microsoft, Harvard, Delft, IIMB
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How is MOOC content structured?

We focused on 3 types of components

Each course has different learning sequence

How much content is in each component?
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Course content clustering - word count based
About 75% of all courses falls into 3 clusters, which were computed using
k-means clustering [2]
2 TokyoTechX courses in 1st cluster (Autophagy, Japanese Architecture)

20



Video lecture duration

On average, video duration range is 3.3 - 9.1 minutes
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Speaking rate of video lecturers

Figure: Speaking rate

Fastest speaking lecturer in Introduction to Public Speaking
(4.1 words/sec)
Slowest speaking lecturer in More Fun with Prime Numbers
(1.03 words/sec)22
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Vector representation of documents
We need a measure to compare courses with each other
Doc2vec [3] allows to represent text document as vectors and maps similar
documents closer in a vector space
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Course classification using document embeddings

How accurately can we classify courses into categories/subjects?
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Classification results

Linear classifier with SGD

training

Accuracy is 80%

Can we capture similarity between course sections?

How can we apply it to extend MOOCs readability

analysis?
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Section comparisons using embeddings
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Pairwise cosine similarity vs Linear cosine similarity
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Readability and content flow of the course
Measure content flow and readability using two parameters:

Flesch-Kincaid reading ease [4]
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Readability and content flow of the course
Measure content flow and readability using two parameters:

Flesch-Kincaid reading ease
Cosine similarity between sections
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Readability and content flow of the course
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Readability and content flow of the course
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Application
Provide a feedback on the content at the development stage
Identifying low readability score sections

Efficient learning
Finding similar section with higher readability score using document vectors
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Implications
Serial MOOCs creation process: Develop, Run & Analysis

Analysis can be done during Develop stage
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Conclusion

The purpose of analysis was to identify features for comparing Tokyo Tech
MOOCs with other MOOCs.

We learned:

Most of the edX MOOCs are video-based

Readability analysis can be useful for developing cohesive and
learner-friendly content

Combination of the MOOC features can be applied to predict course
popularity
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Future work

Continue work on MOOC evaluation and data analysis
Present at JSET conference in Japan in September 2018

Welcome collaborations on MOOC content analysis

See Github for our tools:

https://github.com/TokyoTechX
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