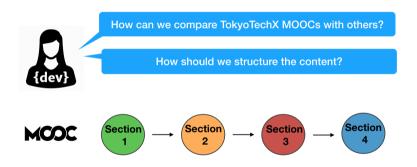
What can be learned from Natural Language Processing of MOOCs?

Zarina, Nopphon, Eric, Naoaki & Jeffrey

Online Education Development Office Center for Innovative Teaching and Learning Tokyo Institute of Technology

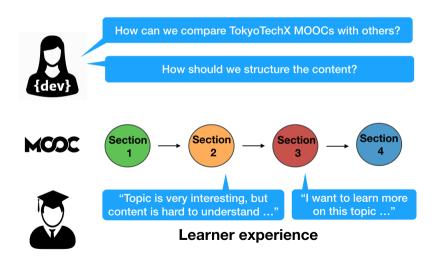
Where did our work start from?

Course design and delivery



Where did our work start from?

Course design and delivery



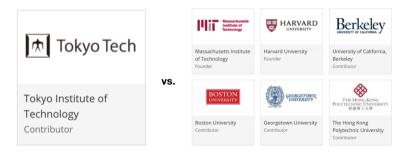
Tokyo Tech

3

Goal of analysis

To identify course design, delivery and content related elements that might improve MOOC quality and learner experience:

• Define metrics for comparing MOOCs' content



Outline

- Current state of MOOC analysis using NLP
- Tokyo Tech edX MOOC Crawler
- Statistical analysis of crawled courses
- NLP analysis using document embeddings

Research in MOOCs

Learner activity

- Dropout prediction
- Adaptive real-time support

Course content

- Content classification
- Content matching

NLP research in MOOCs

Natural Language Processing (NLP) is a branch of computer science and artificial intelligence that allows computers understand and interpret human language.

Learner activity

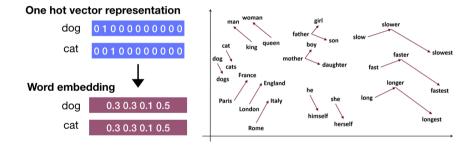
- Dropout prediction
- Adaptive real-time support

- Content classification
- Content matching

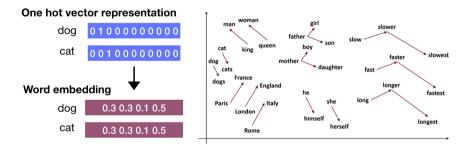
NLP analysis

Why NLP techniques are useful?

Word embedding



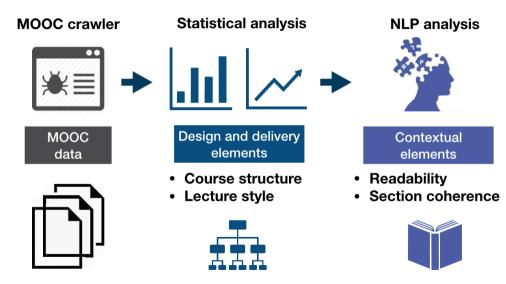
Why NLP techniques are useful? Word embedding



Advantages:

- Model captures semantic similarity
- Model is fast to train
- Human effort for training is minimal (unsupervised learning)

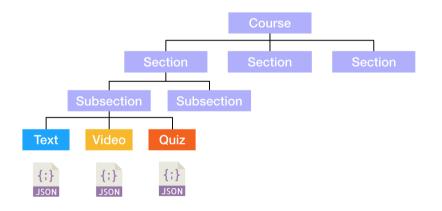
Analysis overview



Outline

Tokyo Tech edX MOOC Crawler

 Python-based tool developed for mining text data of edX MOOCs on a user's dashboard



Output examples of edX-crawler

Meta data for text component

text_block_01: { content: "Welcome to the Autophagy MOOC! section: "01-Introduction", subsection: "000-Welcome__Course_Navigation", unit_idx: "seq_contents_0.txt", word_count: 213

Meta data for video component

}

video_block_01: {

section: "02-Week_1._Introduction_to_the_solid_Earth", subsection: "Introduction", transcript_en: "The name of this course is "Introduction to ...", unit_idx: "seq_contents_0", video_duration: 249, youtube_url: https://youtu.be/35g4IVKXx8I

Tokyo Tech edX MOOC Crawler

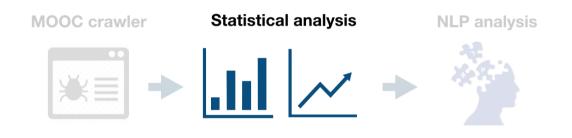
Check out our edX crawler tool available on gitHub: https://github.com/TokyoTechX/web-crawler

We are looking forward for your feedback!

Tokyo Tech

14

Outline



edX MOOCs vs TokyoTechX MOOCs

308 edX MOOCs

Language: English Availability: Archived Subject filters:

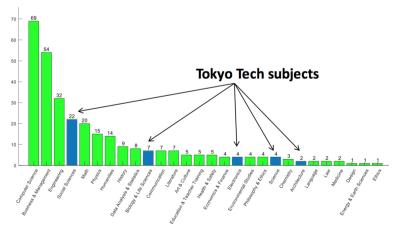
- Business & Management
- Computer Science
- Humanities
- Engineering
- Math
- Physics
- Social Sciences

TokyoTechX MOOCs

- 2 courses in English
 - Autophagy
 - Deep Earth Science
- 2 courses in Japanese & English
 - Intro to Electrical Engineering
 - Modern Japanese Architecture
- 1 course in Japanese
 - Science and Engineering Ethics

Distribution of subjects

- 28 subjects in total
- Top 5 subjects (63%):
 - Computer science, Business and Management, Engineering, Social science, Math

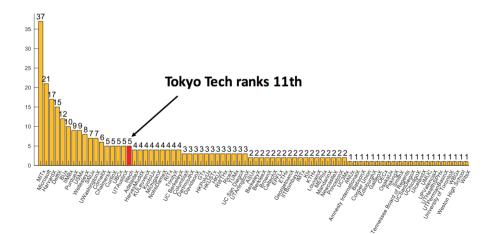


Tokyo Tech

17

Distribution of institutions

- 78 institutions in total
- Top 5 institutes (33%):
 - MIT, Microsoft, Harvard, Delft, IIMB



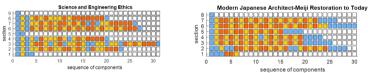
How is MOOC content structured?

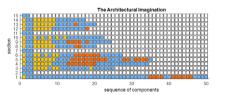
- We focused on 3 types of components
- Each course has different learning sequence

TokyoTechX

• How much content is in each component?

TokyoTechX

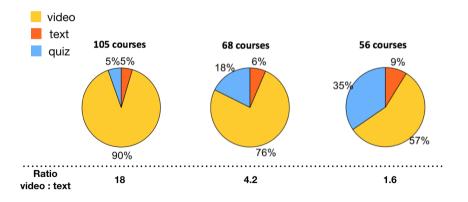




HarvardX

Course content clustering - word count based

- About 75% of all courses falls into 3 clusters, which were computed using k-means clustering [2]
- 2 TokyoTechX courses in 1st cluster (Autophagy, Japanese Architecture)

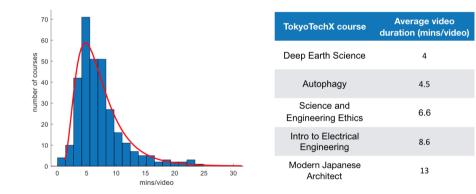


Tokyo Tech

20

Video lecture duration

On average, video duration range is 3.3 - 9.1 minutes



Speaking rate of video lecturers

22

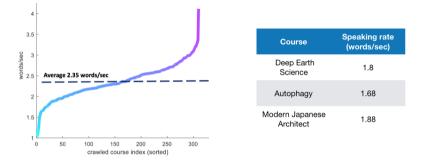
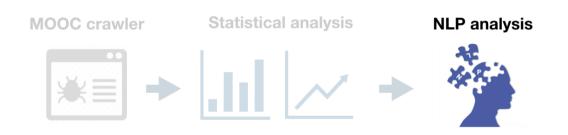


Figure: Speaking rate

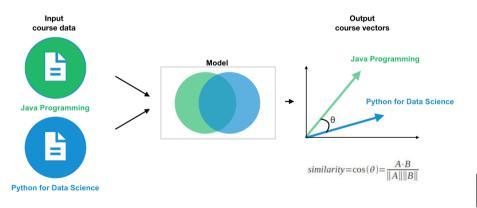
- **Fastest speaking** lecturer in Introduction to Public Speaking (4.1 words/sec)
- **Slowest speaking** lecturer in More Fun with Prime Numbers (1.03 words/sec)

Outline



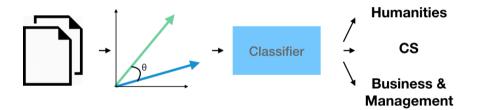
Vector representation of documents

- We need a measure to compare courses with each other
- Doc2vec [3] allows to represent text document as vectors and maps similar documents closer in a vector space



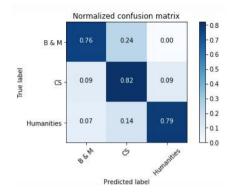
Course classification using document embeddings

• How accurately can we classify courses into categories/subjects?



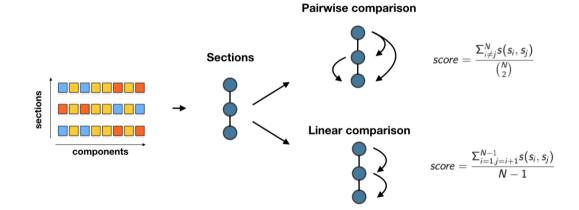
Classification results

- Linear classifier with SGD training
- Accuracy is 80%

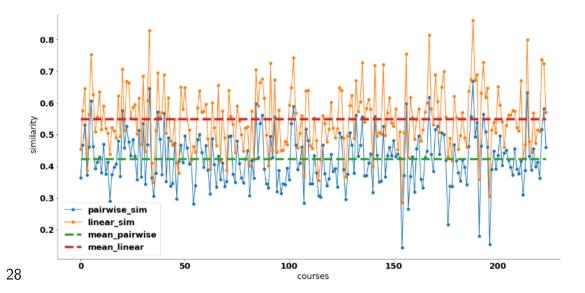


Can we capture similarity between course sections?
How can we apply it to extend MOOCs readability analysis?

Section comparisons using embeddings



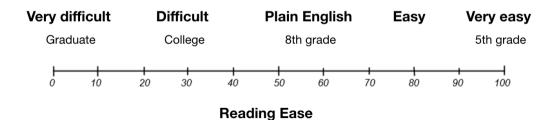
Pairwise cosine similarity vs Linear cosine similarity



Measure content flow and readability using two parameters:

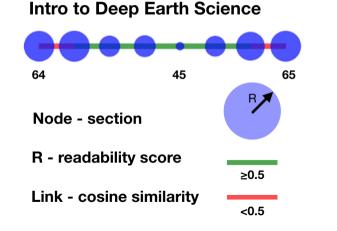
• Flesch-Kincaid reading ease [4]

$$\mathbf{score} = 206.835 - 1.015 \left(\frac{\text{total words}}{\text{total sentences}} \right) - 84.6 \left(\frac{\text{total syllables}}{\text{total words}} \right)$$



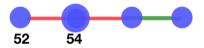
Measure content flow and readability using two parameters:

- Flesch-Kincaid reading ease
- Cosine similarity between sections

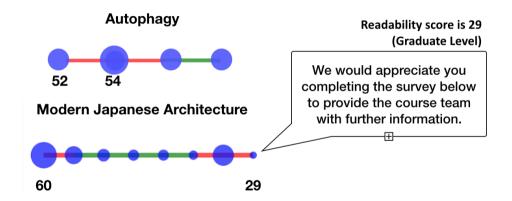


Tokvo Tech

Autophagy



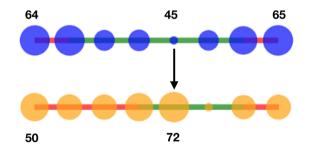
Modern Japanese Architecture



Application

- Provide a feedback on the content at the development stage Identifying low readability score sections
- Efficient learning

Finding similar section with higher readability score using document vectors



Implications

- Serial MOOCs creation process: Develop, Run & Analysis
- Analysis can be done during Develop stage

Tokyo Tech

34

Conclusion

The purpose of analysis was to identify features for comparing Tokyo Tech MOOCs with other MOOCs.

We learned:

- Most of the edX MOOCs are video-based
- Readability analysis can be useful for developing cohesive and learner-friendly content
- Combination of the MOOC features can be applied to predict course popularity

Tokvo Tech

Future work

- Continue work on MOOC evaluation and data analysis Present at JSET conference in Japan in September 2018
- Welcome collaborations on MOOC content analysis
- See Github for our tools:
 - https://github.com/TokyoTechX

References

- Z. A. Pardos, S. Tang, D. Davis, and C. V. Le, "Enabling real-time adaptivity in moocs with a personalized next-step recommendation framework," in *Proceedings* of the Fourth (2017) ACM Conference on Learning@ Scale, pp. 23–32, ACM, 2017.
- D.-J. Kim, Y.-W. Park, and D.-J. PARK, "A novel validity index for determination of the optimal number of clusters," *IEICE Transactions on Information and Systems*, vol. 84, no. 2, pp. 281–285, 2001.
- Q. Le and T. Mikolov, "Distributed representations of sentences and documents," in *International Conference on Machine Learning*, pp. 1188–1196, 2014.
- J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom, "Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel," tech. rep., Naval Technical Training Command Millington TN Research Branch, 1975.