)

Architecting Application
User Interfaces

WHAT'S IN THIS CHAPTER?

> Anintroduction to the Ul challenges involved in loosely coupled,
distributed, and nondistributed Domain-Driven Design (DDD)
systems

> An example of building a Ul that pulls in content from multiple
bounded contexts that run as a single application

> An example of building a Ul that pulls in content from distributed
bounded contexts

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
domaindrivendesign on the Download Code tab. The code is in the Chapter 23 download
and individually named according to the names throughout the chapter.

Customers mostly care about the user interface of your application. If it looks compelling
and allows them to achieve what they want, such as finding the perfect holiday, they

will be happy to spend lots of money. But getting the UI right is more than just about
letting designers come up with eye candy. There are significant engineering challenges
tied to the performance, scalability, and loose coupling of your behind-the-scenes
bounded contexts.

One of the fundamental engineering challenges of a Ul is pulling together all the data. For
an e-commerce application, you may want to show catalog items, prices, shipping options,
special offers, and other types of information on a single page. You know from Part I of this

AARRE
\\. ALY

Vi

|
F
z
|

—————— A O - -

£

£4

646 | CHAPTER23 ARCHITECTING APPLICATION USER INTERFACES

book, “Strategic Patterns: Communicating Between Bounded Contexts” that with event-driven
applications, this variety of information is stored in multiple, eventually consistent bounded
contexts. You also know that these types of systems are share-nothing; in other words, the web
application cannot simply query the database of another bounded context because that increases
coupling. To solve this problem, you have choices, each with a variety of trade-offs. For instance,
you can combine the data on the server or via AJAX calls directly in the web page. Your bounded
contexts have the option of returning plain data, usually XML or JSON, or they may return
HTML that can be directly dumped onto the page. This chapter has examples of each of these
scenarios, along with guidance about when each pattern is relevant and what trade-offs are
involved.

Before commencing with the examples, though, this chapter begins by taking you through some

of the main UI considerations from high-level decisions—such as which team should own it—to
low-level decisions—like which programming language to use. After completing this chapter, you
will learn about how the application tier deals with inputs coming from the UI and provides all the
infrastructural glue to coordinate actions with bounded contexts.

DESIGN CONSIDERATIONS

It can be quite surprising to see the variety of options and trade-offs that are involved in designing

Uls that bring in content from multiple bounded contexts. Some of the options may affect how you
design your back-end application programming interfaces (APIs), whereas others may even impact

your choice of programming language(s). In fact, your UI could even affect which data needs to be
stored by some bounded contexts.

Owned Uls versus Composed Uls

Your first decision when designing a Ul is to decide who logically owns it. For instance, it could
live within a single bounded context (more specifically a single business component) and be owned
by the team responsible for that bounded context. Alternatively, the view could pull in data from
multiple bounded contexts but not be owned by any of them.

Autonomous

A UI for an autonomous application belongs to a single business component. It does not need to
pull in content from another bounded context. However, this means the business component needs
to store locally all the information that should be presented on the UL To make this possible, the
business component has to subscribe to events from other bounded contexts that contain the data

it needs and store the data locally. This was discussed previously in Part II and is illustrated in
Figure 23-1.

Figure 23-1 illustrates a content-enhancement application that the Catalog bounded context owns.
This allows people working in the catalog team to update and override the content for specific
products. All the content for products is stored in this business component, so it is fully available.
However, when they’re updating content, the business staff members want to know how often a
product is sold so they can understand how much effort they should put into the quality of content.

y

T

Design Considerations | 647

information is retrieved by subscribing to the Sales bounded context’s Sale Completed event
d in the Content Enhancement database, ready to be presented in the autonomous web

This
and store
application’s UL

Catalog Staff

Update content

All information required in ¢
. this Ul must be stored in the
Content Enhancement DB
’ N
' N S
‘)

Sale completed event

< |

Events from other bounded contexts
that is required for the Ul

< |

Catalog Bounded Context
% /]

>
=
Database

w O

pntent Enhanceme
usiness Component

FIGURE 23-1: Ul for autonomous applications.

Eventual consistency can be an important consideration with Uls in autonomous applications
because the information shown may not be fully up to date. For the example in Figure 23-1, it is
fine for the number of sales to be minutes, hours, or even days out of date because the catalog staff
just need an idea of an item’s popularity. But if data freshness was a big concern, an authoritative
application may be a better choice.

Authoritative

When you want the latest snapshot of information from multiple bounded contexts in a single UlI,
the application has to request each piece of information directly from the authoritative bounded
context. You can see this in Figure 23-2.

Figure 23-2 shows an e-commerce web page that calls into multiple bounded contexts, each the
authority for the desired information, to get special offers, prices, and other kinds of information. g

This happens each time the page is requested, so the information is fully up to date, not eventually
consistent, 5

- 648 | CHAPTER23 ARCHITECTING APPLICATION USER INTERFACES
Uls that defer to the authority of each piece of information do not belong to a bounded ~‘
context. Instead, many companies have dedicated web teams that don’t own bounded contexts
but are completely responsible for the website. If that approach doesn’t work for you,
you can let teams that own a bounded context also be responsible for Uls that defer to
authority. It’s just important to remember that conceptually the UI does not belong to their
bounded context.
Sales
Bounded
HTTP GET
Context
()
—
E-Commerce Web HTTP GET Catalog
Page Bounded
Context
™~ HTTP GET
\— J
The web page does not
belong to any bounded Marketing
context. It requests data Bounded
over HTTP when page is Context
being constructed at run
time.

FIGURE 23-2: Ul that defers to authority.

Some Help Deciding

A good starting point for choosing between autonomous and authoritative applications is to think
about team relationships. If the Ul is for a specific department, like an internal tool might be, it may
be more efficient to keep it within that team. On the other hand, if the UI forms part of a bigger
application that contains many Uls, such as a public website, you may want a dedicated web team to
deal with all the web and front-end challenges.

Another consideration is the amount of extra data storage and complexity involved in enabling an
autonomous application to have all the data it needs locally. If it is a lot of extra work for a relatively
minor use case, the authoritative option might provide the most benefit for the least amount of
short- and long-term effort. But if you do need fully up-to-date information, eventually consistent
autonomous applications are probably not the best choice.

Design Considerations | 649

HTML APIs versus Data APls

By constructing web pages with snippets of HT

- ded contexts ML that are ret

you giVe boun control of the urned from

Figure 23-3 shows. appearance and behavior of speci;icllez’ C(J)undefd come
lons of a page, as

Bounded
Context

—

SN\

Web Page

HTML

t

Bounded

Context

HTML

Bounded
Context

FIG . .
URE 23-3: Composing a web page with HTML provided by bounded contexts.

l:;(;t;ililoiﬁt?ﬂ, V;/hich offers less presentatignal cF)ntrol to l?ounded contexts, is to have pages
ML cata rom ‘boun.ded contexts. With this glterpatwe approach, you can manage all the
oncerns in a single location, as shown in Figure 23-4.

e that the second approach is by far the most prominent, and it’s
an work. One important consideration is whether
ned in Chapter 13, “Integrating Via HTTP with

mber of benefits in such scenarios.

‘:s'l;’:tuonlme experience reports indicat
- pryo?’(gressed as JSON APIs. But both approaches.c
RPC 5 dl ¢ APIs that are used externally. It was mentio

nd REST,” that dogfooding your API can have a nu

Clie .
nt versus Server-Side Aggregation/Coordmatlon
unded contexts, there is the choice

(data or HTML) from multiple bo

the client of the server. By making each request an AJAX request

ity and additional failure point of the server-side
iot. Building Single

Fo
ofrp : }]1 thgt pulls in content
o' Performing the aggregation on

Insiqd
applizth.e web page, you can avoid the complex .
ation. Conversely, you will have more complexity oD the client as JavaScrip
is one case in which this is less of a problem. The

are NOW, —
the client, but both approaches are in wide use.

Pa o
8¢ Applications (SPAs), as many teams
whereas Figure 23-6 illustrates the

8cnera]
igure ;;cofnmendation on this topic ten
Server.q; -5 illustrates knitting together €O
r-side approach.

ds to favor
atent on the client,

650 | CHAPTER23 ARCHITECTING APPLICATION USER INTERFACES

Bounded
JSON Context
% b
T
T
— 450N (Bounded
\. J Context
AR
~— kb\
Web Page

Bounded
Context

FIGURE 23-4: Pulling in data from multiple bounded contexts.

Bounded
Context

Data or HTML

Data or HTML

Web Page

FIGURE 23-5; Aggregating on the client,

Example 1: An HTML API-Based, Server-Side Ul for Nondistributed Bounded Contexts | 651

Bounded
Context

Data or HTML
Web Application

Data or HTML
Bounded

Context

Aggregated Content
Data or HTML

Bounded
Context

Web Page

FIGURE 23-6: Aggregating on the server.

EXAMPLE 1: AN HTML API-BASED, SERVER-SIDE Ul FOR
NONDISTRIBUTED BOUNDED CONTEXTS

Even when all your bounded contexts live inside the same solution and run as a single application,
Ul composition can still be useful for partitioning presentational responsibility among bounded
contexts. When one bounded context would like to alter its portion(s) of a page, the changes may be
confined to that bounded context, meaning no interference with others. This is the same intention
that motivates the Single Responsibility Principle (SRP). In this section, you implement this scenario
using ASP.NET MVC’s RenderAction(). You're going to create a simple page that pulls in HTML
content from three bounded contexts that live inside the same solution, as shown in Figure 23-7.

To begin this example, you need to create a new ASP.NET web application called PPPDDD.NonDist
{UIcomp. Choose the Empty template, and check the MVC check box. This application contains
only a single view, which will be the composite UI, so it’s fine for it to be the initial page of the

application. To achieve this, add a class called HomeController in the controllers folder with the
content shown in Listing 23-1.

| NOTE ASP.NET MVC’s default route is to look for an Index() method on a
[\controlier called HomeController. If your project has one of these, it is used to

respond to the base URL (/). “

PGS —

P ———

